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ABSTRACT 

We introduce the concept of pseudo symplectic capacities which is a mild 

generalization of that of symplectic capacities. As a generalization of the 

Hofer-Zehnder capacity we construct a Hofer-Zehnder type pseudo sym- 

plectic capacity and estimate it in terms of Gromov-Witten invariants. 

The (pseudo) symplectic capacities of Grassmannians and some product 

symplectic manifolds are computed. As applications we first derive some 

general nonsqueezing theorems that generalize and unite many previous 

versions, then prove the Weinstein conjecture for cotangent bundles over a 

large class of symplectic uniruled manifolds (including the uniruled man- 

ifolds in algebraic geometry) and also show that any closed symplectic 

submanifold of codimension two in any symplectic manifold has a small 
neighborhood whose Hofer-Zehnder capacity is less than a given positive 

number. Finally, we give two results on symplectic packings in Grass- 
mannians and on Seshadri constants. 
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1. In t roduc t ion  and main  results  

Gromov-Witten invariants and symplectic capacities are two kinds of impor- 

tant symplectic invariants in symplectic geometry. Both have many important 

applications. In particular, they are related to the famous Weinstein conjec- 

ture and Hofer geometry (cf. [En, FrGiSchl, FrSchl, HZ2, HV2, LaMcl, LaMe2, 

LiuT, Lul, Ln2, Lu3, Lu5, Lu7, Ln9, Mc2.Mc3, McS1, Pol,Po2, Po3, Schl, Schw, 

V1, V2,V3, V4, We2] etc.). For some problems, Gromov-Witten invariants are 

convenient and effective, but for other problems symplectic capacities are more 
powerful. In the study of different problems different symplectic capacities were 
defined. Examples of symplectic capacities are the Gromov width Wc ([Gr]), the 

Ekeland-Hofer capacity CEH ([EH]), the Hofer-Zehnder capacity cHz ([HZ1]) 
and Hofer's displacement energy e ([H1]), the Floer Hofer capacity CFH ([He]) 

and Viterbo's generating function capacity cv (IV3]). Only 142G, CHZ and e are 
defined for all symplectic manifolds. I n  [HZ1] an axiomatic definition of a sym- 

plectic capacity was given. The Gromov width WG is the smallest symplectic 

capacity. The Hofer-Zehnder capacity is used in the study of many symplec- 

tic topology questions. The reader can refer to [HZ2, McSal, V2] for more 

details. But to the author's knowledge the relations between Gromov-Witten 

invariants and symplectic capacities have not been explored explicitly in the lit- 

erature. Gromov-Witten invariants are defined for closed symplectic manifolds 

([FO, LiT, R, Sic]) and some non-closed symplectic manifolds (cf. [Lu4, Lu8]) 
and have been computed for many closed symplectic manifolds. However, it 
is difficult to compute cHz for a closed symplectic manifold. So far the only 

examples are closed surfaces, for which cHz is the area ([Sib]), and complex pro- 

jective space (CP n, an) with the standard symplectic structure an related to the 
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Fubini-Study metric: Hofer and Viterbo proved cHz(CP n, an) = 7r in [HV2]. 

Perhaps the invariance of Gromov-Witten invariants under deformations of the 

symplectic form is the main reason why it is easier ,to compute them than Hofer- 

Zehnder capacities. Unlike Gromov Witten invariants, symplectic capacities do 

not depend on homology classes of the symplectic manifolds in question. We 

believe that this is a reason why they are difficult to compute or estimate, and it 

is based on this observation that we introduced the concept of pseudo symplectic 

capacities in the early version [Luh] of this paper. 

1.1 PSEUDO SYMPLECTIC CAPACITIES. In [HZ1] a map c from the class C(2n) 

of all symplectic manifolds of dimension 2n to [0, +oc] is called a symplectic 

capacity if it satisfies the following properties: 

(monotonici ty)  If there is a symplectic embedding (Ml,col) ~ (M~,co2) of 

codimension zero then c(M1, wl) <<_ c(M2, w2); 

(conformali ty)  c(M, AT) = IAlc(M,w) for every/k �9 ]R \ {0}; 

(nontrivial i ty)  c(B2n(1), coo) = rr = c(Z2n(1), coo). 

Here B2n(1) and z2n(1) are the closed unit ball and closed cylinder in the 

standard space (]R2n,co0), i.e., for any r > 0, 

B2n(r) = { ( x , y )  �9 R2nl Ixl 2 + ly[ 2 _< r 2} 

and 
z2n(~ ") : { (x ,y )  E ]~2n] X 2 q_yl 2 ~ ~.2}. 

Note that the first property implies that c is a symplectic invariant. 

Let H.(M; G) denote the singular homology of M with coefficient group G. 

For an integer k > 1 we denote by C(2n, k) the set of all tuples (M, w; a l , . . . ,  ak) 

consisting of a 2n-dimensional connected symplectic manifold (M, co) and 

nonzero homology classes ai E H.(M;G),  i = 1 , . . . ,k .  We denote by pt the 

homology class of a point. 

De~nition 1.1: A map c (k) from C(2n, k) to [0, +oc] is called a Gk-pseudo 

symplec t ic  capac i ty  if it satisfies the following conditions. 

P1. P s e u d o  monotonic i ty :  If there is a symplectic embedding ~b: (Ml,col) 

(M2,w2) of codimension zero, then for any ai C H,(M1;G) \ {0}, 

i = 1 , . . . ,k ,  

c(k)(Ml,wl;al , . . .  ,ak) < c(k)(M2,co2;r ,~b.(ak)). 

P2. Conformal i ty .  c (k)(M, AT; h i , . . . ,  ak) = I)~lc(k)(M,w; h i , . . . ,  ak) for 

every A �9 ]R \ {0} and all homology classes a; �9 H.(M;G) \ {0}, i = 

1, . . . ,  k; 
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P3. Nontr iv ia l i ty:  c (k) (B 2~ (1), wo; p t , . . . ,  p t )  = 7r 

= c (k)(Z 2~(1), wo;pt, . . . ,pt) .  

The pseudo monotonicity is the reason that  a pseudo symplectic capacity 

in general fails to be a symplectic invariant. If k > 1 then a Gk_l-pseudo 

symplectic capacity c (k-l) is naturally defined by 

c(k-1)(M, w; c q , . . . ,  ak-1)  := c(k)(M, w;pt, a l , . . . ,  ak-1) ,  

and any c (k) induces a true symplectic capacity 

c(~ := c(k)(M,w;pt, . . .  ,pt). 

In this paper we shall concentrate on the case k = 2 since in this case there 

are interesting examples. More precisely, we shall define a typical G2-pseudo 

symplectic capacity of Hofer-Zehnder type and give many applications. In view 

of our results we expect that  pseudo symplectic capacities will become a powerful 

tool in the study of symplectic topology. Hereafter we assume G = Q and often 

write H,(M)  instead of H , ( M ;  Q). 

1 .2  CONSTRUCTION OF A PSEUDO SYMPLECTIC CAPACITY. W e  begin with 

recalling the Hofer-Zehnder capacity from [HZ1]. Given a symplectic manifold 

(M,w), a smooth function H: M --~ N is called admis s ib l e  if there exist a 

nonempty open subset U and a compact subset K C M \ OM such that  

(a) HIu = 0 and H]M\K = m a x H ;  

(b) 0 _ < H < m a x H ;  

(c) 2 = XH (x) has no nonconstant fast periodic solutions. 

Here XH is defined by w(Xn,  v) = dH(v) for v C TM,  and "fast" means "of 

period less than 1". Let 7-tad(M,w) be the set of admissible Hamiltonians on 

(M, w). The Hofer-Zehnder symplectic capacity cnz(M,  w) of (M, w) is defined 

by 

CHz(M,w) = sup{maxH] H �9 7-lad(M,w)}. 

Note that  one can require the compact subset K = K(H)  to be a proper subset 

of M in the definition above. In fact, it suffices to prove that  for any H C 

7"~ad(M,w) and e > 0 small enough there exists a He C "P~ad(M,w) such that  

maxHe _> m a x H  - e and that  the corresponding compact subset K(He) is 

a proper subset in M. Let us take a smooth function re: N ~ ]~ such that  

0 < f~(t) _< 1 and fe(t) = 0 as t < O, and fe(t) = m a x H -  e as t > m a x H -  e. 
Then the composition f eo  H is a desired He. 
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The invariant CHZ has many applications. Three of them are: (i) giving a new 

proof of a foundational theorem in symplectic topology - -  Gromov's nonsqueez- 

ing theorem; (ii) studying the Hofer geometry on the group of Hamiltonian 

symplectomorphisms of a symplectic manifold; (iii) establishing the existence of 

closed characteristics on or near an energy surface. As mentioned above, the dif- 

ficulties in computing or estimating CHZ (M, w) for a given symplectic manifold 

(M, w) make it hard to find further applications of this invariant. Therefore, it 

seems to be important to give a variant of CHZ which can be easily estimated 

and still has the above applications. An attempt was made in [McS1]. In this 

paragraph we shall define a pseudo symplectic capacity of Hofer-Zehnder type. 

The introduction of such a pseudo symplectic capacity was motivated by various 

papers (e.g., [LiuT, McS1]). 

Definition 1.2: For a connected symplectic manifold (M, w) of dimension at 

least 4 and two nonzero homology classes a0, a ~  E H.(M;  Q), we call a smooth 

function H :  M ~ ~ (s0,aoo)-admissible (resp. (a0,aoo)~ if 

there exist two compact submanifolds P and Q of M with connected smooth 

boundaries and of codimension zero such that the following condition groups 

(1)(2)(3)(4)(5)(6) (resp. (1)(2)(3)(4)(5)(6~ 

(1) P C Int(Q) and Q c Int(M). 

(2) HIp ~- 0 and HIM\Int(Q ) =- maxH. 
(3) 0 _ < H < m a x H .  

(4) There exist cycle representatives of So and s ~ ,  still denoted by s0, s ~ ,  

such that supp(s0) C Int(P) and supp(aoo) C M \ Q. 
(5) There are no critical values in (0, r 12 (max H - r max H) for a small 

c = r > 0. 

(6) The Hamiltonian system ~ = XH(X) on M has no nonconstant fast 

periodic solutions; 

(6 ~ The Hamiltonian system 2 = XH(X) on M has no nonconstant con- 

tractible fast periodic solutions. 

We respectively denote by 

O (1) 7-laa(M,w;ao, ao~) and 7-l~d(M,w, ao,aoo) 

the set of all (a0, aoo)-admissible and (a0, aoo)~ functions. Unlike 

7-lad(M,w) and l-l~ for some pairs (co,Coo) the sets in (1) might be 

empty. On the other hand, one easily shows that both sets in (1) are nonempty 

if a0 and coo are separated by some hypersurface S C M in the following sense. 
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Definition 1.3: A hypersurface S C M is called separa t ing  the  homology  

classes so, am E H . ( M )  if (i) S separates M in the sense that there exist two 

submanifolds M0 and Moo of M with common boundary S such that MoUMoo = 

M and M0 N Moo = S, (ii) there exist cycle representatives of a0 and aoc with 

supports contained in Int(M0) and Int(M~) respectively, (iii) M0 is compact 

and OMo = S. 

Without special statements a hypersurface in this paper always means a 

smooth compact connected orientable submanifold of codimension one and with- 

out boundary. Note that if M is closed and a hypersurface S C M separates 

the homology classes a0 and am, then S also separates a ~  and a0. 

We define 

(2) sup{maxH[H E ~Lad(M,w;ao,aoo)}, CHz(M,  w; So, eeoc) : =  

(2) .-~(2o),., sup{max HI H e 7-La~ ao, ac~)}. b'HZ (.IV1,03; OlO, O:c~) := 

Hereafter we make the conventions that sup 0 = 0 and inf 0 = +oo. As shown 

in Theorem 1.5 below, ~(2) is a G2-pseudo symplectic capacity. We call it ~HZ 
pseudo  symplec t ic  capac i ty  of  H o f e r - Z e h n d e r  type.  ~(2),~Hz and "~HZr:(2~ in 

(2) have similar dynamical implications as the Hofer-Zehnder capacity CHZ. In 

fact, as in [HZ2, HV2] one shows that 

(2) . ,(2o), , ,  
0 < CHz(M,w;Cto,aoc) < +oc (0 < bt t  Z Uvl,co;c~0, aoo)  < +(x))  

implies that every stable hypersurface S C M separating a0 and a ~  carries a 

(contractible in M) closed characteristic, i.e., there is an embedded (contractible 

in M) circle in S all of whose tangent lines belong to the characteristic line 

bundle 

/;s = {(x, ~) 6 T S  [w(~, 7?) = 0 for all r/6 TxS}. 

This leads to the following version of the Weinstein conjecture. 

(a0, aoo)-Weinstein conjecture:  Every hypersurface S of contact type in a 

symplectic manifold (M, w) separating a0 and a ~  carries a closed characteristic. 

In terms of this language the main result Theorem 1.1 in [LiuT] asserts that the 

(a0, aoo)-Weinstein conjecture holds if some GW-invariant 

does not vanish; see 1.3 below. 
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As before, let pt denote the generator of H0(M; Q) represented by a point. 

Then we have the true symplectic capacities 

(2) . 
CHz(M,w) :=  CHz(M,w, pt, pt), 

,-X2o),,, . (3) Chz  (M, ~) := tJHZ [iv,, w; pr, pt). 

Recall that we have also the 7rl-sensitive Hofer-Zehnder capacity denoted CHZ 

in [Lul] and C~ in [Schw]. By definitions, it is obvious that CHz(M,w) < 

cnz(M,w) and C ~ z ( M , ~  ) < c~ for any symplectic manifold (M,w). 

One naturally asks when Cnz  (resp. C~z ) is equal to cHz (resp. c~ The 

following result partially answers this question. 

LEMMA 1.4: Let a symplectic manifold (M,~) satisfy one of the following 

conditions: 

(i) (M,w) is closed. 

(ii) For each compact subset K C M \  OM there exists a compact submanifold 

W C M with connected boundary and of codimension zero such that 

K c W. Then 

CHz(M,w) = CHz(M,w) and Chz(M,w)  = C~4z(M,w ). 

For arbitrary homology classes do, am E H.(M),  

. . . - , ( 2 o ) , .  ,,- , 
C2)z(M,w; do, ao~) <_ t~ .z  [lv,,w; do, a~o), 

(4) (2) . CHz(M,w, aO,ac~) <_ CHz(M,~),  

"-'HzrXZ~ aJ; ao,aoo) - < C]-Iz(M,w)" 

Both r~(2) and (~(2o) ~HZ v s z  are important because estimating or calculating them 

is easier than for CHz and C~lz, and because they still share those proper- 
ties needed for applications. In Remark 1.28 we will give an example which 

illustrates that sometimes rX2) gives better results than CHZ. Recall that the "-~HZ 
Gromov width Wc is the smallest symplectic capacity so that 

(5) Wc <_ CRz <_ C~z. 

Convention: C stands for both C (2) and ~(2o) HZ ~HZ if there is no danger of 
confusion. 

The following theorem shows that C(~) z is indeed a pseudo symplectie capacity. 

THEOREM 1.5: 

(i) If  M is closed then for any nonzero homology classes do, am E H, ( M ; Q), 

C(M, w; do, am) = C(M, w; am, do). 
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(ii) C(M, w; ao, a~)  is invariant under those symplectomorphisms 
E Symp(M, w) which induce the identity on H, (M; Q). 

(iii) ( N o r m a l i t y )  For any r > 0 and nonzero ao,a~ E H,(B2n(r);Q) or 
H,(Z2n(r) ;  Q), 

C(B2n(r), w0; a0, aoo) -- C(Z2n(r), to0; oz0, aoo) -- 7rr 2. 

(iv) ( C o n f o r m a l i t y )  For any nonzero real number A, 

C(M, Aco; a0, aoo) -- IAIC(M, co; a0,  oo). 

(v) ( P s e u d o  m o n o t o n i c i t y )  For any symplectic embedding r (Ml,col) 

(M2, co2) of codimension zero and any nonzero ao, a ~  E H,  (M1; Q), 

C(2) ~ .~ (2) M. co  z  vli,col;a0, oo) < C z( 2, 

Furthermore, if r induces an injective homomorphism ~rl (M1) --* zrl (M2) 

then 

c(2o) r ,  Ar 
H Z  ~,lVll' coI; Oz0' O~~176 ~ C(~~162162 �9 

(vi) For any m e N 

C(M, w; ao, aoo) <_ C(M, w; mao, aoo), 
C(M, co; ao, aoo) <_ C(M, co; ~o, maoo), 
C(M, co; -ao,  aoo) = C(M, co; ao, aoo) = C(M, w; ao, -aoo). 

(vii) I f  dim a0 + dim c~oo N dim M - 2 and ao or aoo can be represented by a 
connected dosed submanifold, then 

C(M, co;ao,aoo) > O. 

Remark 1.6: If M is not closed, C(M, co; pt, a) and C(M, co; a, pt) might be dif- 

ferent. For example, let M be the annulus in ~2 of area 2, and c~ be a generator 

of HI(M). Then Wa(M, co) = C(~)z(M,w;pt, a) = 2, while C(2)(M, co;a, pt) = 

0 since 7-lad(M, co;a,pt) = 0. This example also shows that the dimension 

assumption dim a0 + dim aoo _< dim M - 2 cannot be weakened. 

PROPOSITION 1.7: Let W C Int(M) be a smooth compact submanifold of 

codimension zero and with connected boundary such that the homology 

classes a0, ~oo e H,  (M; Q ) \  {0} have representatives supported in Int(W) and 

Int(M) \ W, respectively. Denote by &o E H , ( W ;  Q) and &oo E H , ( M  \ W; Q) 

the nonzero homology classes determined by them. Then 

(6) C~)z(W, co; ~o,pt) <_ C(H2)z(M, co; ao,aoo), 
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and we specially have 

(2) (7) c g z  (W, o~) = CHZ (W, w) <_ CHZ (M, w; pt, s )  

for any s 6 H,  (M; Q) \ {0} with representative supported in Int(M) \ W.  I f  the 
inclusion W r M induces an injective homomorphism 7~ 1 ( W )  ~ 7[ I (M)  then 

r'(2~ (W, w; &o, pt) < ~(2o) (M, w; So, aoo), (8) - ~ z  - vHz  

and corresponding to (7) we have 

~ _ r'(2~ (M, w; pt, a). C~ = C . z ( W , ~ )  < ~ . z  (9) 

Also 

(10) 

and 

(11) 

C(2) r ~z HZ~..  \ W, w; &oo,pt) _< ~HZ~(2) ~-'-~/r, w; Soo, SO), 

~(2o) (M, ~; a~ ,  ao) "~ H 2~ ) v'~( ~/r \ W, a;; (~oo, pt ) -< "~ H Z 

if the indusion M \ W ~-~ M induces an injeetive homomorphism 7rl ( M \ W )  

~q(M). Furthermore, for any a E H,(M;Q) \ {0} with dima _< dimM - 1, 

(12) WG(M,  w) <_ C(M,  w; pt, s ) .  

For closed symplectic manifolds, Proposition 1.7 can be strengthened as 
follows. 

THEOREM 1.8: If in the situation of Proposition 1.7 the symplectic manifold 

(M, w) is dosed and M \ W is connected, then 

~(2) ~ ~/r \ W,a;; &~ ' - HZ~ , (13) c(~)~(w,~;~o,p t) + ~ . z . . .  pt) < c (2) ~M ~;s0 ,~) .  

In particular, if a C H,(M; Q) \ {0} has a representative supported in M \ W 

and thus determines a homology class 5 E H , ( M  \ W; Q) \ {0}, then 

c . z  (w, ~) + C(~)~(M \ W, ~; ~, ; t )  < ~(~) ~-- ~; pt, s).  

If both inclusions W r M and M\ W ~-+ M induce an injective homomorphisms 

7rl (W) --+ 7rl(M) and 7rl(M \ W) --- 7rl(M), then 

. - , ( 2 o )  / ~ .  (14) C(H2z)(W,w;(~o,pt) + C ~ z ) ( M \  W,w;&oo,pt) <_ wHZ Uu,W;sO,Soo), 
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and specially 

~(2o),, 'c~) (w, co) + ) (M \ W, co; a, ;t) < tlv,, co; 

for any c~ E H, (M; Q) \ {0} with a representative supported in M \ W. 

An inequality similar to (13) was first proved for the usual Hofer-Zehnder 

capacity by Mei-Yue Jiang [Ji]. In the following subsections we always take 

G = Q .  

1.3  ESTIMATING THE PSEUDO CAPACITY IN TERMS OF G R O M O V - W I T T E N  

INVARIANTS. To state our main results we recall that for a given class 

A E/ /2  (M; Z) the Gromov-Witten invariant of genus g and with m + 2 marked 

points is a homomorphism 

~A,g,m+2: H,(./Mg,m+2;(~) • H,(M;Q)  m+2 ~ Q. 

We refer to the appendix and [FO, LiT, R, Sie] and [LuS] for more details on 

Gromov-Witten invariants. 

The Gromov-Witten invariants for general (closed) symplectic manifolds were 

constructed by different methods; cf. [FO, LiT, R, Sie], and [LiuT] for a Morse 

theoretic set-up. It is believed that these methods define the same symplec- 

tic Gromov-Witten invariants, but no proof has been written down so far. A 

detailed construction of the GW-invariants by the method in [LiuT], including 

proofs of the composition law and reduction formula, was given in [Lu8] for a 

larger class of symplectic manifolds including all closed symplectic manifolds. 

The method by Liu-Tian was also used in [Mc2]. Without special statements, 

the Gromov-Witten invariants in this paper are the ones constructed by the 

method in [LiuT]. The author strongly believes that they agree with those con- 

structed in JR]. 

Definition 1.9: Let (M, co) be a closed symplectic manifold and let ao, a ~  E 

H,(M;  Q). We define 

GWg(M, co; ao, aoo) E (0, +co] 

as the infimum of the w-areas w(A) of the homology classes A E H2(M; Z) for 

which the Gromov-Witten invariant 9 A,g,m+2(C; ao, aoo, /31, . . . , 3m) # 0 for 

some homology classes /31,... ,/3m E H, (M;Q)  and C E H.(.Mg,m+2;Q) and 

an integer m > 1. We define 

GW(M, co; a0, aoo) := inf{GWg(M, co; a0, aoo)l g _> 0} E [0, +ee I. 
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The positivity CWg(M, 02; c~0, a ~ )  > 0 follows from the compactness of the 

space of J-holomorphic stable maps (cf. [FO, LiT, R, Sie]). Here we have used 

the convention inf 0 = +oc below (2). One easily checks that both GWg and 

GW satisfy the pseudo monotonicity and conformality in Definition 1.1. As 

Professor Dusa McDuff suggested, one can consider closed symplectic manifolds 

only and replace the nontriviality condition in Definition 1.1 by 

c (2) (CP n, 0.n; pt, pt) = c (2) (CP 1 • T 2n-2, 0" 1 G 020; pt, [pt • T2n-2]) = 7r; 

then both GW0 and GW are pseudo symplectic capacities in view of (19) and 

(23) below. The following result is the core of this paper. Its proof is given in 

w based on [LiuT] and the key Lemma 3.3. 

THEOREM 1.10: For any closed symplectic manifold (M,02) of dimension 

dimM >_ 4 and homology classes ao,ao~ �9 H,(M;Q)  \ {0} we have 

(15) (2) . CHz(M, 02, nO, aoc) <_ GW(M, 02; a0, ao~) 

and 

(16) c(2O) ~. 
H Z  ~,iVl, 02; Olo, O~oc ) __~ GWo(M, 02; a0, ao~). 

Remark 1.11: By the reduction formula (57) for Gromov-Witten invariants 

recalled in the appendix, 

�9 A,g,m+3 ([7r~_3 (K)];a0, c ~ ,  a, ~1, . . . ,  ~m) 

= PD(a)(A) .  ~A,9,m+2([K]; a0, a ~ ,  ~1, . . . ,  ~m) 

for any a �9 H2n-2(M,Z) and [K] E H.(A/lg,m+2,Q). Here 2n = dimM. It 

easily follows that GWg(M, 02; a0, a ~ )  < +co implies that GWg(M, 02; a0, a), 

GWg(M,02;a, ao~) and GWg(M,02;a,/3 ) are finite for any (~,/3 �9 H2n-2(M,Z) 

with PD(a)(A) ~ 0 and PD(3)(A) ~ O. In particular, it is easily proved that 
for any integer g > 0 

(17) GWg(M,w;pt,  PD([02]) ) = inf{GWg(M,w;pt,  a)l a �9 H.(M,Q)}.  

COROLLARY 1.12: If  GWg(M,w;ao, a~)  < +co for some integer g >_ 0 then 
the (no, aoo )- Weinstein conjecture holds in (M, w). 

Many results in this paper are based on the following special case of 

Theorem 1.10. 
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THEOREM 1.13: For any closed symplectic manifold (M, w) of dimension at 
least four and a nonzero homology class a C H.(M;  Q), 

C (2) [M w;pt, a) < GW(M,w;pt, a) 
H Z \  ' 

and 

c ( 2 O )  . . . .  a) <_ GWo(M,w;pt, a). H Z (1Yl, 09; p~, 

Definition 1.14: Given a nonnegative integer g, a closed symplectic manifold 

(M, w) is called g-symplect ic  uni ru led  if gYA,9,m+2(C;pt, a, ~1,..., ~m) ~ 0 
for some homology classes A E H2(M;Z), a,~l,...,/3m C H.(M;Q)  and 

C C H.(A49,m+2;Q ) and an integer m _> 1. If C can be chosen as a point 

pt we say (M, w) is s t rong g-symplect ic  uniruled.  Moreover, (M, w) is called 

symplec t ic  uni ru led  (resp. s t rong  symplec t ic  uniruled) if it is g-symplectic 

uniruled (resp. strong g-symplectic uniruled) for some integer g > 0. 

It was proved in ([Ko]) and ([R]) that (projective algebraic) uniruled mani- 

folds are strong 0-symplectic uniruled.* In Proposition 7.3 we shall prove 

that for a closed symplectic manifold (M, a;), if there exist homology classes 

A E H2(M; Z) and ai E H. (M;Q) ,  i = 1 , . . . ,  k, such that the Gromov-Witten 

invariant k~A,g,k+l(pt;pt, cq,...,C~k) ~ 0 for some integer g _> 0, then there 

exists a homology class B E H2(M;Z) with w(B) <_ w(A) and/3~ C H. (M;Q) ,  

i = 1,2, such that the Gromov-Witten invariant ~B,O,3(pt;pt,/31,/32) ~ O. 
Therefore, every strong symplectic uniruled manifold is strong 0-symplectic 

uniruled. Actually, we shall prove in Proposition 7.5 that the product of any 

closed symplectic manifold and a strong symplectic uniruled manifold is strong 

symplectic uniruled. Moreover, the class of g-symplectic uniruled manifolds 

is closed under deformations of symplectic forms because Gromov-Witten in- 

variants are symplectic deformation invariants. For a g-symplectic uniruled 

manifold (M,w), i.e., GWg(M,w;pt, PD([w]) ) < +c~, the author observed in 

[Lu3] that if a hypersurface of contact type S in (M, w) separates M into two 

parts M+ and M_, then there exist two classes PD([w])+ and PD([w])_ in 

H2n-2 (M, ]~) with cycle representatives supported in M+ and M_ respectively 

such that PD([w])+ +PD([w])_ = PD([w]) and that at least one of the numbers 

GWg(M,w;pt, PD([w])+ ) or GWg(M,w;pt, PD([w])_ ) is finite. Theorem 1.13 

* This is the only place in which we assume that our GW-invariants agree with 
the ones in JR]. In a future paper we shall use the method in [LiuT] and the 
techniques in [Lu8] to prove this fact. 
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(or (15)) implies that  at least one of the following two statements holds: 

C (2) r M HZ~ ,w;pt, PD([w])+) <_ GWg(M,w;pt, PD([w])+) < +oc or 
(18) 

C(~)(M, w;pt, PD([w])_) <_ GWg(M , w; pt, PD([w])_) < +c~. 

On the other hand, (12) shows that  C(~)(M,w;pt, PD([w])+) and 
C(2) ~ ~z gz~...,w;pt, PD([w])_) are always positive. Consequently, S carries a 

nontrivial closed characteristic, i.e., the (pt,pt)-Weinstein conjecture holds in 

symplectic uniruled manifolds ([Lu3]). 

The Grassmannians and their products with any closed symplectic manifold 

are symplectic uniruled. For them we have 

THEOREM 1.15: For the Grassmannian G(k,n) of k-planes in C n we denote 

by a (k'n) the canonical symplectic form for which a(k'n)(L (k'n)) = 7r for the 

generator L (k'n) of H2(G(k, n); Z). Let the submanifolds X (k'n) .~ G(k, n - 1) 

and y(k,n) of G(k,n) be given by {V E G(k,n) I w~v = 0 for a11 v E V} 

and {V �9 G(k, n) I Vo �9 V} for some fixed v0, w0 �9 C n \ {0} respectively. 

Their homology c/asses [X (k,n)] and [y(k,n)] are independent of the choices of 

v0, w0 e cn\{0} and deg[X (k'n)] = 2k (n -k -1 )  and deg[Y (k,n)] -= 2(k-1) (n-k) .  

Then 

WG(G(k,  n), = a(k,n);pt, = 

for a = [X (k'n)] or a = [y(k,n)] with k < n - 2. 

In particular, if k = 1 and n _> 3 then [y(1,n)] _ pt and (G(1, n), a (l'n)) = 

(CP n - l ,  an - l ) ,  where a n - 1  the unique U(n)-invariant K~hler form on CP  n-1 

whose integral over the line CP  1 c CP  n-1 is equal to 7r. In this case 

Theorem 1.15 and Lemma 1.4 yield 

cHz(CP n-l ,  an - l )  =- CHz(CP n-l ,  an - l )  
(19) (2) n-1 

:-= CHz(CP , an-1;pt,pt) = 7c. 

Hofer and Viterbo [HV2] first proved that  cgz(CPn,an) -= r. Therefore, 

Theorem 1.15 can be viewed as a generalization of their result. If k -- 1, on 

one hand the volume estimate gives WG(CP n-l,  an - i )  _< lr, and on the other 

hand there exists an explicit symplectic embedding B2n-2(1) r (CP n- l, an-1); 

see [Ka, HV2]. So we have WG(CPn-I,an_I)  = r. For k > 2, however, the 

remarks below Theorem 1.35 show that  the identity Wa(G(k,n),  a (k'n)) = ~r 

does not follow so easily. Karshon and Tolman [KaTol] independently com- 

puted WG(G(k, n), a (k,n)) in a different method. 
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THEOREM 1.16: 'For any closed symplec t ic  manifold (M, w), 

(20) C ( M  x G ( k , n ) , w  | (aa(k'n));pt,  [M] x a) <_ lal~r 

for any a E ~ \ {0} and a = [X (k,n)] or a = [y(k,n)] with k <_ n - 2. Moreover, 

for the produc t  

(W~f~) = ( G ( k l , n l )  x . . .  x G(kr ,  nr),  (a l~  (kl'nt)) • " " G (ar(7(k~'n~))) 

we havo 

(,21) C ( W , ~ ; p t ,  a l  x . . .  x a t )  < (lall + . . .  + la~lfir 

for any e \ {0} and = or F rthermore, 

(22) W v ( G ( k l , n l )  x . . .  • G ( k r , n ~ ) , a  (k~'~l) @ . . .  @ a (k~'n~)) = ~r 

For the projective space C P  n = G(1, n + 1) we have 

THEOREM 1.17: Let  (M,  w) be a closed symplec t ic  manifold and an the unique 

U(n + 1)-invariant Kghler  form on C P  n whose integral over the line C P  1 C C P  n 

is equal to 7r. Then 

(23) C ( M  x CPn,co D (aan);pt ,  [M x pt]) = lalTr 

for any  a E I~ \ {0}. Moreover,  for any  r > 0 and the s tandard ball B2~(r) of 
radius r and the cyl inder z2n ( r )  = B2(r) x ]t~ 2n-2 in (]~2n,020), we have 

(24) C ( M  x B2n(r) ,  w @ To) = C ( M  x z2n( r ) ,  w @ To) = ~rr 2 

for C -~ CHZ,  C ~ HZ, CHZ and C~ . 

Remark 1.18: Combining the arguments in [McS1, Lull one can prove a weaker 

version of (24) for any weakly monotone noncompact geometrically bounded 

symplectic manifold (M, w) and any r > 0, namely 

C ~ z ( M  x B2n(r) ,w G w0) _< C ~ z ( M  x z2n( r ) ,  a)G To) <_ 7rr 2. 

This generalization can be used to find periodic orbits of a charge subject to a 

magnetic field (cf. flu2]). 

From Theorem 1.13 and Lemma 1.4 we obtain 
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COROLLARY 1.19: For any dosed symplectic manifold (M, w) of dimension at 

/east 4 we have 

CHz(M,w) < GW(M,w;p t ,  pt), C~z(M,w ) <__ GWo(M,w;pt ,  pt). 

Thus cHz(M,w)  is finite if the Gromov-Wit ten invariant 

~ a,g,m + 2 ( C ; pt, pt, /31, . . . , /3m ) 

does not vanish for some homology classes A E//2 (M; Z), 31, �9 �9 �9 E H.  (M; Q) 

and C c H . ( ~ g , m + 2 ; Q )  and integers 9 > 0 and m > 0. Notice that  

GW0(M, w; pt, pt) is needed here. For example, consider 

(M,w) = (CP 1 • CpI ,o ' I  @ o1). 

The following Theorem 1.21 and its proof show that  cHz(M, w) = C~4z(M, w) = 

21r and GWo(M,w;pt ,  pt) = 27r. However, one easily proves that  

GWo(M, w;pt, PD([w])) = GWo(M, w;pt, ~ot x CP1]) 

= GWo(M,w;pt ,  [CP 1 x pt]) = 7r. 

So GW0 (M, w;pt, pt) is necessary. 

Example 1.20: (i) For a smooth complete intersection (X,w) of degree 

(a l l , . . . ,  dk) in C P  n+k with n = 2 ~ ( d i  - 1) - 1 or 3 ~ ( d i  - 1) - 3, we have 
: < 

(ii) For a rational algebraic manifold (X, aJ), if there exists a surjective 

morphism ~r: X --+ C P  n such that  ~rlx\s is one-to-one for some subvariety 

S of X with codimc 7r(S) > 2, then C~z(X  , ~) = C]4z(X , aJ) is finite. 

(i) follows from the corollaries of Propositions 3 and 4 in [Be] and (ii) comes 

from Theorem 1.5 in [LiuT]. We conjecture that  the conclusion also holds for 

the r a t i o n a l l y  c o n n e c t e d  m a n i f o l d s  introduced in [KoMiMo]. 

In some cases we can get bet ter  results. 

THEOREM 1.21: For the standard symplectic form an~ on CP  TM as in 

Theorem 1.17 and any ai E ]~ \ {0}, i = 1 , . . . , k ,  we have 

C ( C P  ~1 x . . .  x C P n k , a l a ~  |  @aka~k) = (lall + . . .  + [akl)Tr 

for C = cHz and C~ . 

According to Example 12.5 of [McSal] 

}4)G(CP 1 • . . .  x C P  1, alOl G . . .  (~ akal) = min{ la l l , . . . ,  lakl}Tr 
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for any ai E R \ {0}, i = 1 , . . . ,  k. This, Theorem 1.21 and (5) show that CHZ, 

C~z,  CHZ and c~ are different from the Gromov width WG. 

1.4 T H E  WEINSTEIN CONJECTURE AND PERIODIC ORBITS NEAR SYMPLECTIC 

SUBMANIFOLDS. 

1.4.1. The Weinstein conjecture in cotangent bundles of uniruled manifolds. 

By "The Weinstein conjecture" we in the sequel mean the (pt,pt)-Weinstein 

conjecture, i.e.: Every separating hypersurface S of contact type in a symplectic 

manifold carries a closed characteristic. While in some of the previous works 

on the Weinstein conjecture, e.g. [HV1], the assumption that S is separating 

was also imposed, Weinstein's original conjecture, [We2], does not assume that 

S is separating. So far this conjecture has been proved for many symplectic 

manifolds; cf. [C, FHV, FrSchl, H2, HV1, HV2, LiuT, Lul, Lu2, Lu3, V1, 

V4, V5] and the recent nice survey [Gi] for more references. In particular, for 

the Weinstein conjecture in cotangent bundles Hofer and Viterbo [HV1] proved 

that if a connected hypersurface S of contact type in the cotangent bundle of a 

closed manifold N of dimension at least 2 is such that the bounded component of 

T*N \ S contains the zero section of T ' N ,  then it carries a closed characteristic. 

In [V5] it was proved that the Weinstein conjecture holds in cotangent bundles 

of simply connected closed manifolds. We shall prove 

THEOREM 1.22: Let (M,w) be a dosed connected symplectic manifold of 

dimension at least 4 and let L C M be a Lagrangian submanifold. Given a 

homology class &o E H, (L; Q) \ {0} we denote by ao E H, (M; Q) the class 

induced by the inclusion L ~ M. Assume that the Gromov-Witten invari- 

ant t~A,g,m+l(C; aO, aX, . . . ,  am) does not vanish for some homology classes 

A E H2(M;•), o q , . . . , a m  E H,(M;Q)  and C E H.(.h/[g,m+X;Q) and late- 
(2) ~ 

gers m > 1 and g > O. Then for every c > 0, CHz(Uc,wcan;O~o,pt) < + ~ ,  

and 
C(2O) . . . .  HZ (Uc, 0-)can; Ol0, pt)  < +(30 

if 9 = 0 and the inclusion L ~-+ M induces an injective homomorphism ~rl (L) 

7rl(M). Here Uc = {(q,v*) E T*L[ <v*,v*) < c 2} is with respect to a 

Riemannian metric (., .) on T*L. Consequently, every hypersurface of contact 

type in (T'L,  Wean) separating &o and pt carries a dosed characteristic and a 

contractible one in the latter ease. In particular, if (M, w) is a g-sympleetie 

uniruled manifold then for each c > 0 

CHZ(Ue,Wcan) = CHz(Uc, odcan) < --[-oo 
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and 

(25) C~ -~ C~iz(Uc,oAcan) < -~-oo 

if g = 0 and the inclusion L ~-~ M induces an injective homomorphism 7rl(L) -+ 

7rl(M). I f  (M,w) itself is strong symplectic uniruled then (25) also holds for 

L = M C (T 'M,  Wean). 

Using a recent refinement by Macarini and Schlenk [MaSchl] of the arguments 

in [HZ2, Sections 4.1 and 4.2] we immediately derive: if L is a Lagrangian sub- 

manifold in a g-symplectic uniruled manifold and S C (T*L, wcan) a smooth 

compact connected orientable hypersurface without boundary, then for any 

thickening of S, 

r I x S ~ U C (T 'L,  Wca,), 

# { t E I [ P ( S t ) ~ O } = p ( I )  and # { t E I [ P ~  

if g = 0 and the inclusion L ~ M induces an injective homomorphism 7rl(L) 

7rl(M). Here tt denotes Lebesgue measure, I is an open neighborhood of 0 in ]R, 

and 7:'(St) (resp. P~ denotes the set of all (resp. contractible in U) closed 

characteristics on St = ~b(S x {t}). 

COROLLARY 1.23: The Weinstein conjecture holds in the following manifolds: 

(i) symplectic uniruled manifolds of dimension at least 4; 

(ii) the cotangent bundle (T 'L,  Wcan) of a closed Lagrangian submanifold L 

in a g-symplectic uniruled manifold of dimension at least 4; 

(iii) the product of a closed symplectic manifold and a strong symplectic 

uniruled manifold; 

(iv) the cotangent bundles of strong symplectic uniruled manifolds. 

The result in (i) is actually not new. As observed in [Lu3] the Weinstein 

conjecture in symplectic uniruled manifolds can be derived from Theorem 1.1 in 

[LiuT]. With the present arguments it may be derived from (18) and 

Corollary 1.12. (ii) is a direct consequence of Theorem 1.22. (iii) can be de- 

rived from (i) and Proposition 7.5. By (ii) and Proposition 7.5 the standard 

arguments give rise to (iv). 

1.4.2. Periodic orbits near symplectic submanifolds. The existence of periodic 

orbits of autonomous Hamiltonian systems near a closed symplectic submanifold 

has been studied by several authors; see [CiGiKe, GiGu, Ke] and the references 

there for details. Using Proposition 1.7 and suitably modifying with the argu- 

ments in [Lu6] and [Bil] we get 
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THEOREM 1.24: Let (M, w) be any symplectic manifold and let N C M be a 

connected closed symplectic submanifold of codimension 2. Then for any e > 0 

there exists a smooth compact submanifold W C M with connected boundary 

and of codimension zero which is a neighborhood of N in M such that 

C~ w) = ch (W, w) < 

Consequently, for any smooth compact connected orientable hypersurface 

S c W \ OW without boundary and any thickening r S x I ~ U C W it 

holds that 

~({t �9 11P~ # O}) = ~(I). 

Here #, I, St and po ( & ) are as above Corollary 1.23. 

The first conclusion will be proved in w and the second follows from the first 

one and the refinement of the Hofer-Zehnder theorem by Macarini and Schlenk 

[MaSchl] mentioned above. The second conclusion in Theorem 1.24 implies: For 

any smooth proper function H: W ~ R the levels H = e carry contractible in 

U periodic orbits for almost all e > 0 for which {H = e} C Int(W). Using 

Floer homology and symplectic homology, results similar to Theorem 1.24 were 

obtained in [CiGiKe, GiGu] for any closed symplectic submanifolds of positive 

codimension in geometrically bounded, symplectically aspherical manifolds. Re- 

call that  a symplectic manifold (M, w) is said to be symplectically aspherical if 

W[~=(M) = 0 and cI(TM)I~r=(M) = 0. It seems possible that  our method can be 

generalized to any closed symplectic submanifold of codimension more than 2. 

1.5 NONSQUEEZING THEOREMS. We first give a general nonsqueezing theorem 

and then discuss some corollaries and relations to the various previously found 

nonsqueezing theorems. 

Definition 1.25: For a symplectic manifold (M, a)) we define F(M, w) �9 [0, +c~] 

by 

F(M,w) = inf C(~)(M,w;pt, a), 

where a �9 H . (M;  Q) runs over all nonzero homology classes of degree dega  _< 

dim M - 1. 

By (12), for any connected symplectic manifold (M,w) we have 

(26) Wa(M,w)  _< r ( M , ~ ) .  

However, it is difficult to determine or estimate F(M, w). In some cases one can 

replace it by another number. 
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Definition 1.26: For a closed connected symplectic manifold (M,w) of 

dimension at least 4 we define GW(M, co) E (0, +oc] by 

GW(M, w) = inf GWg (M, w; pt, a), 

where the infimum is taken over all nonnegative integers g and all homology 

classes a e H . (M;Q)  \ {0} of degree dega <_ d imM - 1. 

By (17) we have GW(M,w) = infgGWg(M,w;pt, PD([w])). Note that 

GW(M,w) is finite if and only if (M,w) is a symplectic uniruled manifold. 

From Theorem 1.13 and (26) we get 

THEOREM 1.27: For any symplectie uniruled manifold (M, w) of dimension at 

least 4 we have 
}'Vc(M,w) < GW(M,w). 

Actually, for a uniruled manifold (M, w), i.e., a K~hler manifold covered by 

rational curves, the arguments in [Ko, R] show that GW(M, w) < w(A), where 

A = [C] is the class of a rational curve C through a generic x0 E M and such 

that fc  w is minimal. 

Remark 1.28: Denote by (W, a)  the product 

(CP nl x . . .  x cpnk,alanl (~'.. (~ akank) 

in Theorem 1.21. It follows from Theorem 1.13 and the proof of Theorem 1.17 

that 

GW(W, a) < min{lall , . . . ,  [akl}Tr. 

By (26) and definition of F(W, fl), for any small e > 0 there exists a class 

a,  E H,(W, Q) of degree deg(c~) < dimW - 1 such that 

WG(W, fl) < C (2) (IV 12;pt, a~) < min{lal[,, lakl}Tr + e. 
- -  H Z k  , " " , 

But Theorem 1.21 shows that 

CHz(W, ~)  = C H z ( W  , ~)  = ( [ a l [ -~ - . . . - [ - [ ak [ )7 [ .  

Therefore, if k > 1 and c > 0 is small enough then 

wG(w,a) <_ < C.z(W,a).  

This shows that our pseudo symplectic capacity C (2) (W. gt;pt, a~) can give a HZ\ 
better upper bound for WG(W, ~) than the symplectic capacities cHz(W, ~2) 
and CHz(W, fl). 
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Recall that Gromov's famous nonsqueezing theorem states that if there exists 

a symplectic embedding B2n(r) ~-* Z2n(R), then r < R. Gromov proved it by 

using J-holomorphic curves, [Gr]. Later on, proofs were given by Hofer and 

Zehnder based on the calculus of variation and by Viterbo using generating 

functions, [V3]. As a direct consequence of Theorem 1.5 and (24) we get 

COROLLARY 1.29: For any dosed symplectic manifold ( M, co) of dimension 2m, 

if  there exists a sympleetic embedding 

B2m+2~(r) ~-~ (M x Z2n(R),co | 

then r < R. 

Actually, Lalonde and McDuff proved Corollary 1.29 for any symplectic man- 

ifold (M,w) in [LaMe1]. Moreover, one can derive from it the foundational 

energy-capacity inequality in Hofer geometry (el. [LaMcl, La2] and [McSal, Ex. 

12.21]). From (24) one can also derive the following version of the nonsqueezing 

theorem which was listed below Corollary 5.8 of [LaMc2,II] and which can be 

used to prove that the group of Hamiltonian diffeomorphisms of some compact 

symplectic manifolds have infinite diameter with respect to Hofer's metric. 

COROLLARY 1.30: Let (M,w) and (N,a) be closed symplectic manifolds of 
dimensions 2m and 2n respectively. If  there exists a symplectic embedding 

M x B2~+2p(r) ~ (M x N x B2V(R),w@a| ) 

or a symplectic embedding 

M x B2n+2P(r) r (M x ~2n x B2p(R),w @ co~n) G w~P)), 

then r <_ R. Here w ('~) denotes the standard symplectic structure on R 2m. 

The second statement can be reduced to the first one. From Theorem 1.16 

we get 

COROLLARY 1.31: For any dosed symplectic manifold (M, co) of dimension 2m, 

W a ( M  x G(k,n) ,w | (aa(k'n))) < lal~. 

The study of Hofer geometry requires various nonsqueezing theorems. Let us 

recall the notion of quasicylinder introduced by Lalonde and McDuff in [LaMc2]. 
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Definition 1.32: For a closed symplectic manifold (M, w) and a set D diffeo- 

morphic to a closed disk in (l~ 2, aJo = ds A dr), the manifold Q = (M x D, f~) 

endowed with the symplectic form f~ is called a quas i cy l i nde r  if 

(i) 12 restricts to a; on each fibre M • {pt}; 

(ii) ~2 is the product ~ • a;o near the boundary OQ = M • OD. 
If 12 = w x w0 on Q, the quasicylinder is called split .  The a r e a  of a quasicylinder 

(M x D, ~) is defined as the number A = A(M x D, ~) such that  

Vol(M x D, 12) = A. Vol(M, w). 

As proved in Lemma 2.4 of [LaMc2], the area A ( M x D ,  f~) is equal to f{x}• ~ 
for any x C M. 

Following [McS1] we replace Q in Definition 1.32 by the obvious 

S2-compactification (M x S2,gt). Here f~ restricts to w on each fibre. It is 

clear that  gt(A) = A(Q, f~) for A = ~vt x S 2] e H2(M • $2). But it is proved in 

Lemma 2.7 of [LaMc2] that  f~ can be symplectically deformed to a product 

symplectic form w | a. Therefore, it follows from the deformation invariance of 

Gromov-Witten invariants that  

kO A,O,3(pt; pt, [M x pt], [M x pt]) ~ O. 

By Theorem 1.13 we get 

C(M x S2, f~;pt, [M x pt]) < ~(A) = A(Q, f~). 

As in the proof of Theorem 1.17 we can derive from this 

THEOREM 1.33 (Area-capacity inequality): For any quasicylinder (Q, ~) 

c~ ~) = C~iz(Q, ~) <_ A(Q, D). 

Area-capacity inequalities for l/Ya, CHZ and c~ have been studied in [FHV, 

HV2, LaMcl, Lul ,  McS1]. As in [LaMc2, McS1] we can use Theorem 1.33 and 

Lemma 1.4 to deduce the main result in [McS1]: For an autonomous Hamiltonian 

H: M ~ ]R on a closed symplectic manifold (M, w) of dimension at least 4, if 

its flow has no nonconstant contractible fast periodic solution then the path 

r ] in Ham(M,w) is length-minimizing among all paths homotopic with 

fixed endpoints. 

From Theorem 1.33 and (5) we obtain the following nonsqueezing theorem 

for quasi-cylinders. 
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COROLLARY 1.34: For any quasicylinder (M x D, f~) of dimension 2m + 2, 

Wa(M • D, f~) _< A(M • D, ~t). 

Our results also lead to the nonsqueezing theorem Proposition 3.27 in [Mc2] 
for Hamiltonian fibrations P ~ S 2. 

1.6 SYMPLECTIC PACKINGS AND SESHADRI CONSTANTS. 

1.6.1. Symplectic packings. Suppose that B2n(r) = {z e ~2n I IZl < r} is en- 

dowed with the standard symplectic structure w0 of ~ 2 n .  For an integer k > 0, 
a symplec t i c  k-packing of a 2n-dimensional symplectic manifold (M, w) via 
B 2n(r) is a set of symplectic embeddings k {~}i=1 of (B2n(r),wo)into (M,w) 

such that Impi  A Im~j  = 0 for i ~ j .  If Vol(M,0a) is finite and Int(M) C 
U Im ~i, then (M, w) is said to have a full symplec t ic  k-packing. Symplectic 
packing problems were studied for the first time by Gromov in [Gr] and later 
by McDuff and Polterovich [McPo], Karshon [Ka], Traynor [Tr], Xu [Xu], 
Biran [Bil, Bi2] and Kruglikov [Kru]. As before, let O n denote the unique 
U(n + 1)-invariant Ks form on CP n whose integral over CP 1 is equal to 
It. For every positive integer p, a full symplectic pn-packing of (CP n, an) was 
explicitly constructed by McDuff and Polterovich [McPo] and Traynor [Tr]. A 
direct geometric construction of a full symplectic (n + 1)-packing of (CP n, an) 
was given by Yael Karshon, [Ka]. By generalizing the arguments in [Ka] we 
shall obtain 

THEOREM 1.35: Let the Grassmannian (G(k, n), a (k'~)) be as in Theorem 1.15. 
Then for every integer 1 < k < n there exists a symplectic [n/k]-packing of 
(G(k,n),a (k'n)) by B2k(n-k)(1). Here [n/k] denotes the largest integer less 

than or equal to n/k. 

This result shows that the Fefferman invariant of (G(k, n), a (k'n)) is at least 

[n/k]. Recall that the Fefferman invariant F(M, w) of a 2n-dimensional sym- 

plectic manifold (M, w) is defined as the largest integer k for which there exists 
a symplectic packing by k open unit balls. Moreover, at the end of w we shall 

prove 

(27) Vol(G(k, n), 0 "(k'n) ) ~--- ( k  - 1)!...  (n2!'-l!'l)!.-.(n -2!k .-1!1)!... 2!. 1! .7rk(n_k)" 

Note that Vol(B2k(n-k)(1), wo) = 7rk(n-k)/(k(n -- k))!. One easily sees that the 

symplectic packing in Theorem 1.35 is not full in general. On the other hand, 
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a full packing of each of the Grassmannians Gr+(2, ~5) and Gr+(2, ~6) by two 

equal symplectic balls was constructed in [KaTo2]. 

1.6.2. Seshadri constants. Our previous results can also be used to estimate 
Seshadri constants, which are interesting invariants in algebraic geometry. 

Recall that for a compact complex manifold (M, J)  of complex dimension n 

and an ample line bundle L ~ M, the Seshadri  cons tan t  of L at a point 

x E M is defined as the nonnegative real number 

(28) e(L,x) := inf fcc~(L) 
cgx multx C ' 

where the infimum is taken over all irreducible holomorphic curves C passing 

through the point x, and multx C is the multiplicity of C at x ([De]). The global 

Seshadri constant is defined by 

e(L) := inf e(L,x). 
x E M  

Seshadri's criterion for ampleness says that L is ample if and only if r > 0. 

The cohomology class cl (L) can be represented by a J-compatible K~hler form 

WL (the curvature form for a suitable metric connection on L). Denote L n = 

fM w~ = n! Vol(M, WL). Then r x) has the elementary upper bound 

(29) ~(L,x) <_ ~/-~. 

Biran and Cieliebak [BiCi, Prop. 6.2.1] gave a better upper bound, i.e., 

s(L) < Wc(M, wL). 

However, it is difficult to estimate We(M,  WL). Together with Theorem 1.27 we 

get 

For a closed connected complex manifold of complex dimension THEOREM 1.36: 

at least 2, 

r <_ GW(M, WL). 

Remark 1.37: By Definition 26, if (]W(M, wL) is finite then (M, WL) is sym- 

plectic uniruled. So Theorem 1.36 has only actual sense for uniruled (M, J). 

In this case our upper bound GW(M, wL) is better than ~ in (29). As an 

example, let us consider the hyperplane [H] in C P  n. It is ample, and the Fubini- 

Study form ~oFS with fop1 WFS = 1 is a Kghler representative of cl ([H]). Let Pl 

and P2 denote the projections of the product CP n • CP '~ to the first and second 
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factors. For an integer m > 1 the line bundle p~[H] + p ~ ( m [ H ] )  ~ C.P n • C P  ~ is 

ample and cl (p~ [HI + p~ (m[H])) has a K/taler form representative (.oFS (~ mWFS. 

From the proof of Theorem 1.16 it easily follows that 

GW(CP '~ x cPn,wFS @ mwFS) ~ 1. 

(In fact, equality holds.) But a direct computation gives 

2~/(p~[g]_~_p~(m[g]))2 n (fCpn• 2~/-~r~) ' = 2~/--~. V n[n! > 1. 

From the above arguments and the subsequent proofs the reader can see that  

some of our results are probably not optimal. In fact, it is very possible that  

using our methods one can obtain better results in some cases ([LuT] and [Lu9]). 

We content ourselves with illustrating the new ideas and methods. 

The paper is organized as follows. In Section 2 we give the proofs of 

Lemma 1.4, Theorems 1.5, 1.8 and Proposition 1.7. The proof of Theorem 1.10 

is given in Section 3. In Section 4 we prove Theorems 1.15, 1.16, 1.17 and 1.21. 

In Section 5 we prove Theorems 1.22 and 1.24. Theorem 1.35 is proved in Sec- 

tion 6. In the Appendix we discuss some related results on the Gromov-Witten 

invariants of product manifolds. 
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2. P r o o f s  of  L e m m a  1.4, T h e o r e m s  1.5 a nd  1.8 a nd  P r o p o s i t i o n  1.7 

We first give two lemmas. They are key to our proofs in this section and the 

next one. According to Lemma 4.4 on page 107 and Exercise 9 on page 108 of 

[Hi] we have 

LEMMA 2.1: If  N is a connected smooth manifold and W C Int(N) a compact 

smooth submanifold with connected boundary and of codimension zero, then 

OW separates N in the sense that Int(N) \ OW has exactly two connected 

components and the topological boundary of each component is OW. In this 

ease OW has a neighborhood in N which is a product OW x ( -2 ,  2) with OW 

corresponding to OW • {0}. I f  W is only contained in N then OW has a 

neighborhood in W which is a product OW x ( -2 ,  0]. 

From Lemma 12.27 in [McSal] we easily derive 

LEMMA 2.2: Given a Riemannian metric g on M,  there exists p = p(g, M)  > 0 

such that for every smooth function H on M with 

sup NVgVgH(x)IIg < p 
x E M  

the Hamiltonian equation x = X H ( x ) has no nonconstant fast periodic solutions. 

In particular, the conclusion holds if  IIHIIc~ < p. Here Vg is the Levi-Civita 

connection of g and norms are taken with respect to g. 

From Darboux's theorem we obtain 

LEMMA 2.3: Let (M,w) be a 2n-dimensional symplectic manifold, and B2n(r) 

= {z E]R 2~ : [z] <_ r} w i t h r  > O. Then for anyzo E Int(M) and anysma11 

> 0 there exist r > O, a symplectic embedding ~: (B2~(2r),wo) ~ (M,w) 

with ~(0) = Zo and a smooth function H ~ :  M ~ ]~ such that: 

(i) H ~  = 0 outside Int(~(B2n(2r)), and H~e = c on ~(B2n(r)). 

(ii) H ~  is constant h(s) along ~({[z I = s}) for any s E [0, 2r], where h: [0, 2r] 

-~ [0, r is a nonnegative smooth function which is strictly decreasing on 

[r, 2r]. Consequently, g~r,~(~(z)) > g ~ ( ~ ( z ' ) )  i f r  _< [z I < Iz'[ _< 2r, and 

H ~ has no critical values in (0, e). 

(iii) 5c = XHZ ~ (x) has no nonconstant fast periodic solutions. 

Proof of Lemma 1.4: Case  (i). We only need to prove that 

CHz(M,w;p t ,p t )  > CHz(M,w). 
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To this end it suffices to construct for any H E 7-~ad(M, to) an 

F C 7-lad(M,w;pt, pt) 

such that  max F > max H. By the definition there exist a nonempty open 

subset U and acompac t  subset K C M \ O M  such that: (a) HIu = 0 and 

HIM\K = maxH, (b) 0 _< H < maxH,  (c) k = Xg(x)  has no nonconstant fast 

periodic solutions. These imply that  U C Int(K). By the illustrations below 

the definition of CHZ in w we may assume that  M \ K ~ 0. Then both U and 

M \ K are nonempty open sets because M is a closed manifold. For a given 

small E > 0 we may take symplectic embeddings qo and r from (B2n(2r), w0) to 

(M, w) such that  

~a(s2n(2r)) C U and r C M \ g .  

Let H ~ and H r be the corresponding functions as in Lemma 2.3. Since H ~ 

(resp. H~e) is equal to zero outside qo(B2n(2r)) (resp. r we can define 

a smooth function H: M --~ R by 

{ maxH + HCr,~(x) if x e M \ K, 
~I(x) = H(z) if x e K \ U, 

- H ~ ( x )  if x e V. 

Define F = - ~ + s .  Then m a x F  = m a x H + 2 e  > maxH,  m i n F  = 0 and 

2 = X f ( x )  has no nonconstant fast periodic orbits in M. 

Since M is a closed manifold, M \ Int(r is a compact submanifold 

with boundary r It follows that  F E 7-lad(M,w;pt,pt) with P(F) = 
qo(B2n(r)) and Q(F) = M \ Int(r The desired result follows. 

Going through the above proof we see that  if H C 7~~ to), i.e., 

5c = Xg(x)  has no nonconstant contractible fast periodic solutions, then 

F e 7-t~ pt). This implies that  C~z(M,w ) = c~ 
Case  (ii). The arguments are similar. We only indicate different points. Let 

H E 7-l~d(M,w). For a compact subset K(H) C M \ O M  we find by assumption 

a compact submanifold W with connected boundary and of codimension zero 

such that  K(H) C W. Since K(H) is compact and disjoint from OM we can 

assume that  K(H) is also disjoint from OW. By Lemma 2.1 we can choose 

embeddings 

(I): [-5, 0] • OW -* M 

such that  (I)({0} • OW) = OW and 

r  O] • OW) C W and K(H) M r  O] • OW) -= 0. 
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For each t E [-5, 0] the set 

:= w \ r 0] • a w )  

is a compact submanifold of M which is diffeomorphic to W. By shrinking r > 0 

in Case (i) if necessary, one easily constructs a smooth function H~: M ~ 

such that  

(a) H~ = 0 in Int(W_4) and Hc = c outside W-l ;  

(b) 0 < H~ < 6 and each c E (0, ~) is a regular value of H~; 

(c) Hc is constant f(s) along O({s} • OW) for any s e [-5, 0], where f :  [-5, 0] 

--* [0, s] is a nonnegative smooth function which is strictly increasing in 

[-4,-1];  
(d) k = XH~ (x) has no nonconstant fast periodic solutions. 

Let H ~ be as in Case (i). We can define a smooth function H: M ~ ~ by r~g 

m a x H + H e ( x )  i f x E M \ K ,  
~I(x) = H(x) if x e K \ U, 

- g ~ ( x )  if x e U, 

and set F = H + r  Then m a x F  _> m a x H ,  m i n F  = 0 and k = XF(x) 

has no nonconstant fast periodic solutions. As in Case (i) one checks that  

F e 7-lad(M,w;pt,pt) with P(F) = ~(B2n(r)) and Q(F) = M \ Int(W_l).  So 

we have m a x H  <__ m a x F  <_ CHz(M,w) for any H C 7-lad(M,w), and thus 

CHz(M, tz) ~_ CHz(M,w). As above we get that  CHz(M,w) = cHz(M,w) and 

Chz(M, ) -- ' 

Proof of Theorem 1.5: (i) We take H E ~ad(M, w; co, s~) .  Let P = P(H) 
and Q = Q(H) be the corresponding submanifolds in Definition 1.2, and a0, 

a ~  the chain representatives. Define G = - H  + maxH.  Then 0 < G < 

maxG = maxH, GIp = maxG,  GIM\Int(Q ) =- 0 and XG = --XH. Therefore, 

G E 7"(ad(M,w; Soc, SO), and (i) follows. 

(ii) is a special case of (v), and (iv) and (vi) are clear. 

For (iii), note that  B2n(1) and Z2~(1) are contractible. One can slightly 

modify the proofs of Lemma 3 and Theorem 2 in Chapter 3 of [HZ2] to show 
that  C (2) fB2ntl ~ _ HZ~ ~ j,wo;ao,a~o) > ~r and C(fflz)(Z2n(1),wo;So, Soo) < 7r. Then 

(iii) follows from (v) and definitions: 

(2) 2n < C z(B 

_< C~z) (B2" (1), w0; so, s ~ )  

<_ C(2z) ( Z2~(1), Wo; so, S ~  ) 

~_Tr. 
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For (v) we only prove the first claim. The second claim then follows together 

with the argument in [Lull. For H C 7"~ad(M1, Wl; a0, c ~ )  let the submanifolds 

P1 and Q1 of (Ml ,wl)  be as in Definition 1.2. Set P2 = r and Q2 = r 

and define r  C C ~ ( M 2 , R )  by 

H o r  x e r 
r  = m a x H  i f x  ~ r 

It is clear that  r  (H) e ?'/~d (M2, w2; r  (a0), r  ( a~) ) ,  and so (v) follows. 

To prove (vii) we only need to show that  ?-lad(M,w;aO,a~) is nonempty 

under the assumptions there. Without loss of generality let a0 be represented 

by a compact connected submanifold S c Int M without boundary. Since 

dim a0 + dim aoo _< dim M - 1 it follows from intersection theory that  there 

is a cycle representative Ooo of a ~  such that S N ~ = 0. 

Choose a Riemannian metric g on M. For e > 0 let A;~ be the closed e-ball 

bundle in the normal bundle along S, and let exp: Af~ ~ M be the exponential 

map. For e > 0 small enough, P = S~ = exp(Af~) and Q = $2~ = exp(A/'2~) are 

smooth compact submanifolds of M of codimension zero, and $2~ is still disjoint 

from 5 ~ .  Since dim S = dim a0 _< dim M - 2, both P and Q have connected 

boundary. 

Take a smooth function f :  R --* 1R such that  f(t) = 0 for t < e 2, f(t) = 1 for 

t > 4e 2 and f '(t) > 0 for e 2 < t < 4c 2. We define a smooth function F: M ~ IR 

by F(x) ~ 0 for x E P, F(x) = 1 for x E M \ Q and F(x) = f(llvxll~) for 

x = (sx, v~) c $2~. In view of Lemma 2.2 above, for 5 > 0 sufficiently small the 

function F~ = 5F belongs to ~-~ad (M, w; ao, a~).  | 

Proof  of Proposition 1.7: Note that  every function H in 7-l~d (W, w; g~o, pt) can 

be viewed as one in ~-lad(M, co; oz0, aoo) in a natural way, and so (6) follows. 

If the inclusion W ~-* M induces an injective homomorphism 7h(W) --~ 

~h(M) then each function H in 7t~d(W,w;8o,pt ) can be viewed as one in 

7-t~d(M, w; ao, aoo). Therefore we get (8). 

To prove (10) let us take a function H E ~-Lad(M \ W,w;&~,pt). Suppose 

that  P(H) C Q(H) c In t (M \ W) are submanifolds associated with H. Then 

H = max H on (M \ W) \ Q. Therefore we can extend H to M by setting 

H = max H on W. We denote this extension b y / t .  Since we have assumed 

that  a0 has a cycle representative whose support  is contained in Int(W) C M \ Q ,  

/)" belongs to "]'~ad( M, w; aoo, aO ). 
If H C 7-l~ \ W,w;5~,pt)  and the inclusion M \ W ~-~ M induces an 

injective homomorphism ~rl (M \ W) ~ r l  (M) then the a b o v e / ~  belongs to 

~~ w; aoo, ao). This implies (11). 
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For (12) we only need to prove that  l~Ya(M,w) < C(~)(M,~o;pt, a) since 
,-~(2o), ~ .  C(H2)(M,w;pt, a) <_ tJHZ [lU,w;pt, a). For any given sympleetie embedding 

r (B2n(r),wo) --~ (Int(M),a~) and sufficiently small e > 0, we can choose a 

representative of a with support in M\r because dim a _< dim M - 1 .  

By (5) and (7) we have 

~r(r-e) 2 = l/Ya(r < CHz(r < C(~)(M,w;pt, a). 

With e ~ 0 we arrive at the desired conclusion. | 

Proof of Theorem 1.8: To prove (13) let W and a0, aoo satisfy the assumptions 

in Theorem 1.8. For H E 7-lad(W,a~;&o,pt) and G E 7-lad(M \ W,w;&~,pt) 
let P1 C Int(Q1) c QI c Int(W) and P2 C Int(Q2) c Q2 c M \ W be 

corresponding submanifolds as in Definition 1.2. Then HIp 1 --- 0, HIw\int(Q1 ) = 

m a x H  and G[p 2 = 0, G[(M\W)\Int(Q2) = maxG. Define K: M ~ ~ by 

K(x) = { g(x) ,  if x e W, 
maxH + m a x G - G ( x ) ,  if x e M \  W. 

This is a smooth function and belongs to 7"~ad(M, co; o~0, oloo) with P(K) = P1 
and Q(K) = M \ Int(P2). But m a x K  = m a x H  + maxG. This leads to (13). 

1 

The following corollary of Theorem 1.8 will be useful later on. 

COROLLARY 2.4: Under the assumptions of Theorem 1.8, let (N, a) be another 
dosed connected symplectic manifold and ~ E H, (N; Q) \ {0}. Then 

c7( 2) trot ( M \  W) ,a~w; l~  x &~,pt) C(~)(N x W , a |  &o,pt) +~HZ v ,  x 

_~(2) ~r M, aGco;/3 x 

and 

c~(2~ ( ~r • W, e ;Z • a0,pt) ,-. • ( M \  W) , -  e ;Z • a ,pt) 

<_ ~(2~ x M, aOw;t3 X ao,/3 x 

if both inclusions W r M and M \ W ~ M also induce an injective homo- 

morphisms ~1 (W) -~ ~I(M) and ~ (M \ W) -~ ~ (M). 
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3. P r o o f  of  T h e o r e m  1.10 

We wish to reduce the proof of this theorem to the arguments in [LiuT]. 

Liu-Tian's approach is to introduce the Morse theoretical version of Gromov- 

Witten invariants. In their work the paper [FHS] plays an important role. To 

show how the arguments in [LiuT] apply to our case we need to recall some 

related material from [FHS]. 

Consider the vector space S = {S �9 ]~2n• [ s T  : S}  of symmetric (2nx2n)- 

matrices. It has an important subset Sr2g consisting of all matrices S �9 S such 

that for any four real numbers a, b, a,/3 the system of equations 

S (SJo - JoS - aI2n - bJo)~ = 0 (30) / (SJo JoS aI2n bJo)S( - a (  - t3Jo( = 0 

has no nonzero solution ~ E ~2n• where In denotes the identity matrix in 
]I~n • n and 

&= In  0 " 

It has been proved in Theorem 6.1 of [FHS] that for n _> 2 the set Sr~' ~ is open 

and dense in S and 7 ~ T s ~  �9 S~2e~g for any S �9 S~2e~, any �9 �9 a L ( n ,  C) A O(2n) 

and any real number T r 0. In view of Definition 7.1 in [FHS] and the arguments 

in [McS1] we introduce 

Definition 3.1: A nondegenerate critical point p of a smooth function H on 

a symplectic manifold (M,w)  is called s t rong admissible  if it satisfies the 

following two conditions: 

(i) the spectrum of the linear transformation DXH(p):  TpM --* TpM is 

contained in C \ {Ai[ 2zr _< • < +c~}; 

(ii) there exists Jp �9 J ( T p M ,  Wp) such that for some (and hence every) unitary 

frame r ~2n ___, TpM (i.e., OJo = JpCb and '~*w v = wo) we have 

S ---- JoO- lVXH(p)~  �9 Sr2eg. 

Definition 3.2: An (a0, aoo)-admissible (resp. (a0, a~)~ function 

H in Definition 1.2 is said to be (a0, a ~ ) - s t r o n g  admissible  (resp. (a0, a ~ )  ~ 

s t rong  admissible)  if instead of condition (5) it satisfies the stronger condition 

(5') g has only finitely many critical points in Int(Q) \ P, and each of them 

is strong admissible in the sense of Definition 3.1. 

Let us respectively denote by 

O (31) ~-[sad(M,w;ao,ac~) and 7"~sad(M,w, ao,aoc ) 
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the set of (a0, a~)-s t rong admissible and (a0, c~oo)~ admissible functions. 

They are subsets of 7"~ad( M,  w; ~0, aoo ) and 7-lad(M, w; ao, aoo ) respectively. The 

following lemma is key to our proof. 

LEMMA 3.3: / fdim M _> 4, then 7-lsad(M, w; ao, am)  (resp. TI~ w; ao, aoo)) 
is C~ in "l-lad(M, w; ao, a m )  (resp. "l-l~ w; ao, o ~  ) ). 

Proo~ Let F E ?-lad(M, w; ao, am)  (resp. 7-12d(M, w; ao, aoo)). We shall 

prove that  for any small e > 0 there exists a G E 7-lsaa(M,w;ao,aoo) 

(resp. 7t~a~(M , co; ao, am))  such that  

(32) m a x F  > maxG >_ m a x F  - e. 

Our proof is inspired by the proof of Proposition 3.1 in [Schl]. 

Let CF (resp. cF) be the largest (resp. smallest) critical value of F in 

(0, max F). If there are no such critical values, there is nothing to show. If 

CF = CF, then it is the only critical value of F in (0, max F), and this case can 

easily be proved by the following method. So we now assume CF <_ CF. Then 

by Definition 1.2(5) we have 

O < CF < CF < m a x F .  

Let C ( F )  be the set of critical values of F.  It is compact and has zero Lebesgue 

measure, so that  for small e > 0 we can choose regular values of F,  

, , , t a t 
b~o < al < bl < "'" < ak-1 < bk-1 < k, 

such that: 

(i) 0 < b ~ < c g a n d C F < a  S < m a x F .  

(ii) [a~, b~] C [CF, Crl  \ C ( F ) ,  i = 1 , . . . ,  k - 1. 

(iii) X-~k-1 th' z_-,i=l ~vi - a~) + b~ + max F - a S > max F - e. 

Purthennore, we may also take regular values of F,  

bo < al < bl < . . .  < ak-1 < bk-1 < ak, 

such that  

b0<bE, a k > a  I , t k, ai < ai < b~ < bi, i = 1 , . . . ,  k - 1, 

k -1  

~ ( b i  - ai) + bo + m a x F  - ak > m a x F  - 2e. 
i = l  
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Consider the piecewise-linear funct ion f :  R ~ ]~, 

f ( t )  = 

t for t < bo, 
bo for bo < t < al ,  
t - al  + bo for a l  < t < bl, 
bl - at  + bo for bl < t < a~, 
t -  a2 + (bl - a l )  + bo for a2 < t < b2, 
�9 �9 �9 for �9 �9 

k - 2  
t - ak -1  + Y~i=l (bi - ai)  -b bo for a k - 1  <_ t < bk-1 ,  

k - 1  
E i = I  (bi - ai) + bo for bk-1 <_ t <_ ak,  

�9 ~ - - . k - 1 ,  b t - ak + 2-,i=1 l, i - ai)  + bo for t > ak. 

Then  m i n { f ( t ) l t  �9 [0 ,maxF]}  = 0 and 

k-1  

m a x { f ( t ) l  t �9 [O, m a x F ] }  = m a x F  - ak + E ( b i  - ai)  + bo > m a x F  - 2e. 
i=1 

Note  tha t  b0 < al  < bl < . . -  < a k - 1  < b~- i  < ak are all nonsmooth  points of f 

in (0, max  F) .  By suitably smoothing f near these points we can get a smooth  

funct ion h: R ~ N satisfying: 

(h ) l  0 <_ h ' ( t )  _< 1 for t e R; 
a t (h)2 0 < h ' ( t )  _< 1 for t �9 [0, b~) U(  k, m a x F ]  U (U~Z1(a~,b~)); 

i i k - l r b l  i . (h)a h ( t )  = f ( t )  for t e ~ i=o  t i, ai+l],  

(h)4 h ( t )  = Y(t) near  t = 0 and t = m a x F .  

Set H = h o F .  Then  (h)l  and (h)a imply tha t  H �9 7- lad(M,w; Co, a ~ )  and 

(33) 
k-1  

m a x H  = h ( m a x F )  = m a x F - a k  + E ( b i - a ~ )  + bo > m a x F -  2e. 
i= l  

Fur thermore ,  one easily checks tha t  

(H) I  The  critical values of H in (0, m a x H )  are exact ly  b0, J ~ i = l  (bi - ai)  + bo, 

j = l , . . . , k - 1 ;  

(H)2 The  corresponding critical sets are respectively {b~ < F < a t}  and 

{b} < F ~ a } + l }  , j = 1 , . . .  , k -  1; 

(H)a  H =  b0 on {b~ _< F_< al};  

J b {b} < F <  ' . . . ,  (H)4 H = ~ i = 1 (  i - ai)  + bo on a j+ l} ,  j = 1, k -  1. 

' b'o, m a x F  - a'kl 0 < i < k - 1} we set For each 0 < s < �89 min{a~+ 1 - b~, b~ - ai, 

k - 1  

U N s  :-- {b~ - s <_ F < ai+ 1 +  s} .  
i=O 
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Since the set of regular values of F is open, both No and Ns with sufficiently 

small s > 0 are compact smooth submanifolds with boundary. For any open 

neighborhood O of No we have also Ns C O if s > 0 is small enough. By (H)3 

and (H)4, VgVgH = 0 on No and thus we can choose 

l min{a~+l ' ' , , 0 < 5 <  ~ - b i , b  i - a i , b o , m a x F - a ~ l  O < i < k - 1 }  

so small that  

sup IIVgVaH(x)t[~ < p/2. 
xE N2~ 

Here p is given by Lemma 2.2. Let us take a smooth function L: M ~ R such 

that 

(L)l supp(L) C N~; 

(L)2 [ILl[c2 < p/2 (and thus supxeN2~ I[VgVg(H + L)(x)I[9 < p); 

(L)3 h(b~ - 25) < H(x) + L(x) < h(a~+ 1 + 25) for x e {b~ - 5 < F < a~+ 1 + 5}, 

i = O , . . . , k - 1 ;  

(L)4 H + L has only finitely many critical points in N~ and each of them is 

strong admissible. 

The condition (L)4 can be assured by Lemma 7.2 (i) in [FHS]. To see that (L)3 

can be satisfied, note that  (h)l implies that  h(b~ - 5) <__ H(x) <_ h(a~+ 1 + 5) as 
I b~-5 < F(x) <_ hi+ ~ +5. By the choice of 5 we have b~-25 > 0, a~ +25 < max F 

and 

+5,a +25,b' -25,b -he i =  1 , . . . ,k-1 .  

It follows from (h)2 that for i = 0 , . . . ,  k - 1, 

(34) h(b~ - 25) < h(b~ - 5) < h(b~) < h(a~+l) < h(a~+ 1 + 5) < h(a~+ 1 + 25). 

Using these and (L)2 we can easily choose L satisfying (L)a. Set G = H + L. 

Then P(G) = P(H), Q(G) = Q(H) and 

(35) m a x G = m a x H  and m i n G = m i n H = 0 .  

Now we are in position to prove 

0 ~ G e Tlsad(M,w;ao,a~) (resp. ~sad(M,w, ao, a~)).  

First, the above construction shows that all critical values of G in (0, max G) 

sit in 
k-1  

[.J (h(b  - 251, h(aL1 + 2511 
i=0 
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and the corresponding critical points sit in N~. It follows that  G has only finitely 

many critical points in Int(Q) \ P and each of them is strong admissible. 

Next we prove that  XG has no nonconstant fast periodic orbits. Assume 

that  ~/is such an orbit. It cannot completely sit in M \ N~ because G = H in 

M \ N~. Moreover, Lemma 2.2 and (L)2 imply that  7 cannot completely sit in 

N2~. So there must exist two points 3'(tl) and "7(t2) such that  ~/(tl) �9 ON~ and 

~/(t2) �9 ON2~. Note that  all possible values G takes on ON~ (resp. ON2~) are 

h(b'  5 ) ,  ' = - - h(ai+ 1+5), i 0 , . . . , k  1 

(resp. h(b~ - 2(~), h(d~+ 1 + 2(~), i = 0 , . . . ,  k - 1). 

By (34) any two of them are different. But G(~/(tl)) = G(7(t2)). This con- 

tradiction shows that  XG has no nonconstant fast periodic orbit. Clearly, this 

argument also implies that  Xc  has no nonconstant contractible fast periodic 

orbit if F �9 HOd(M, w; ao, aoo). 
Finally, (33) and (35) together give 

max G > max F - 2e. 

The desired conclusion is proved. | 

As direct consequences of Lemma 3.3 and (2) we have 

(2) 
(36) CHz(M,w;ao,aoo) -- s u p { m a x H l g  C ~sad(M,w;ao, aoo)}, 

C(~z)(M,w; a0, aoo) = sup{max HI H �9 7-l~ M, w; ao, aoo)}. 

Proof of Theorem 1.10: We only prove (15). The proof of (16) is simi- 

lar. Without loss of generality we assume that  r~(2) ~nz w;a0,ao~) > 0 and " ~ H Z  ~,~'* ' 

GW(M, ~v; a0, am) < +oo. We need to prove that  if 

(37) ~A,g,m+2(C; aO, a~,/31,.. . ,  ~m) # 0 

for homology classes A 6 H2(M;Z),  C �9 H.(A4g,m+~;Q) and ~ l , . . . , ~ m  �9 

H.  (M; Q) and integers m _> 1 and g > 0, then 

(38) C(~)(M,w;ao,aoo) <_ w(A). 

Arguing by contradiction, we may assume by (36) that  there exists H �9 

~sad(M, ~; ao, aoo) such that  m a x H  > w(A). Then we take ~/> 0 such that  

(39) max g - 27 > w(A). 
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By the properties of H there exist two smooth compact submanifolds P, Q c M 

with connected boundary and of codimension zero such that the conditions 

(1), (2), (3), (4), (6) in Definition 1.2 and (5') in Definition 3.2 are satis- 

fied. Changing H slightly near {H = 0} and near {H = m a x H }  in the class 

Tlsad(M,w; c~0, a ~ )  and using Lemma 2.1, we can choose embeddings 

0 : [ - 2 , 0 ] x 0 Q ~ Q \ I n t ( P )  and ~ : [ 0 , 2 ] x 0 P ~ Q \ I n t ( P )  

such 

(i) 
(ii) 

(iii) 

(iv) 

that: 

(I)({0) x OQ) = OQ and ~({0} x OP) = OR; 

(I)([-2, 01 x OQ) N ko([0, 2] x OP) = O; 

H has no critical points in (I)([-2, 0) • OQ)u~((0, 2] • OP) and is constant 

m~ on (I)({s} x OQ) and n~ on ~({t} x OF) for each s �9 [-2,  0] and t �9 [0, 2]; 

g(x) < ms for any x �9 M \ ~)s and s �9 [-2,0], and nt < H(x) for any 

x �9 M \ Pt and t �9 [0, 2], where 

C2s = (M\Q)uO([s ,0 ]  x OQ) and Pt = PUk0([0,t]  x OF). 

Notice that the above assumptions imply 

rn8 < m s ,  < m a x H  and 0 < n t  < n t ,  

for - 2  < s < s' < 0 and 0 < t < t' < 2. Moreover, (~  (resp. /~t) is a smooth 

compact submanifold of M with boundary (I)({s} • OQ) (resp. qy({t} x OP)). 
Clearly, (~s N Pt = 0. For T �9 [0, 2] we abbreviate 

B~ = P ~ u Q _ ~ .  

By the properties of H and (39) we find 5 �9 (0, 1) such that 

(40) m-2~ > max H - ~, 

where p is as in Lemma 2.2. 

L: M ~ 1~ such that 

(a) supp( / )  C Int(B~); 

n2~ < U and sup IIVgVgH(x)llg < p/2, 
xEB2~ 

As before we may choose a smooth function 

(b) IILIIc2 < min{p/2,~} (and thus sup=eB2~ IIVgVg(H + L)(x)llg < p); 

(c) H + L has only finitely many critical points in Int(B~), and each of them 

is also strong admissible; 

(d) m-2~ < H(x) + L(x) for x e Int(Q_~); 

(e) H(x) + n(x) < n2~ for x �9 Int(P~). 
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As above, condition (c) is assured by Lemma 7.2 (i) in [FHS]. Set F = H + L. If 

x E B~ then either F(x) > m-2~ or F(x) < n2~. On the other hand, the above 

(a) and (iv) imply that n2~ < F(x) < m-2,~ if x E M \ B2~. This means that 

a solution of :i: = X f ( x )  cannot go to B~ from M \ B2~ because F is constant 

along any solution of ~ = XF(x).  So any nouconstant solution of ~ = XF(X) 

lies either in B2~ or in M \ B~. It follows from (a) and (b) that & = XF(x) 

has no nonconstant fast periodic solutions. Using (40) and (a)-(e) again we get 

that  F is a smooth Morse function on M satisfying 

(F)I  each critical point of F is strong admissible; 

(F)2 A- F has no nontrivial periodic solution of period 1 for any A E (0, 1]; 

(F)3 F(x) > m a x H  - 77 for x E Q_~, and F(x) < ~ for any x E P~; 

(F)4 max F < max H + ~1 and min F _> - y .  

As a consequence of (F)I  we get that  (]ad(M,w, X f )  is nonempty. From 

Lemma 7.2(iii) in [FHS] we also know that Jad(M, w, XF) is open in J ( M ,  w) 

with respect to the C~ Therefore, we may choose a regular J E 

(]'ad(M,w, XF) and then repeat the arguments in [LiuT] to define the Morse 

theoretical Gromov-Witten invariants 

'I'A,j~,x~',9,m+2 (C; O~o, o~,  r Zm) 

and to prove 
(41) 

ff~O A,J.x,AF, g ,m + 2 ( C ; OLO, OLeo, ~ 1 , . . . ,  ~ m  ) = ~ A,g,m-t- 2 ( C ; 0~0, OLoo , /~1, . . . , /~rn ) 

for each A E [0, 1]. As in Lemma 7.2 of [LiuT] we can prove the corresponding 

moduli space ~'A4(c0,c~; J1,F,A) to be empty for any critical points Co E P~ 

and c~  E Q-~ of F.  In fact, otherwise we may choose an element f in it. Then 

one easily gets the estimate 

(42) 0 <_ E ( f )  = F(co) - F(c~) + ~v(A). 

(Note: From the proof of Lemma 7.2 in [LiuT] one may easily see that  the energy 

identity above their Lemma 3.2 should read E(f )  = w(A) + H(c_) - H(c+).) 

From the above (F)3 and (42) it follows that 

m a x H  - 2~ < F(c~) - F(co) <_ w(A). 

This contradicts (39). So ~'A4(co, c~;  J1, F, A) is empty and thus 
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By (41) we get q2A,g,m+2(C;ao,ao~,131,...,~m) = 0. This contradicts (37). 

(38) is proved. | 

4. P r oo f s  o f  T h e o r e m s  1.15, 1.16, 1.17 a n d  1.21 

Proo[of Theorem 1.15: We start with the matrix definition of the Grassman- 

nian manifold G(k,n) = G(k,n;C). Let n = k + m, M(k,n;C) = 

{A �9 CkX~ I rankA = k} and GL(k;C) = {Q �9 Ckxk I detQ r 0}. Then 

GL(k; C) acts freely on M(k, n; C) from the left by matrix multiplication. The 

quotient U(k, n; C)/GL(k; C) is exactly G(k, n). For A �9 U(k, n; C) we denote 

by [A] �9 G(k, n) the GL(k; (:)-orbit of A in M(k, n; C), and by 

Pr:  M(k, n;C) ~ G(k,n), A ~ [A] 

the quotient projection. Any representative matrix B of [A] is called a 

h o m o g e n e o u s  c o o r d i n a t e  of the point [A]. For increasing integers 1 < a l  < 

�9 -" < ak _< n let {ak+l,. . . ,an} be the complement of { a l , . . . , a k }  in the set 

{1 ,2 , . . . , n} .  Let us write A �9 M(k,n;C) as A = (A1 , . . . ,An)  and 

Asl...sa = (As1, . . .  ,Ask) �9 C kxk and A~k+~...s ~ = (Ask+,,... ,As~) �9 C kxm, 

where A1 , . . . ,  An are k • 1 matrices. Define a subset of M(k, n; C) by 

V(al,.  .,ak) = {A �9 M(k,n;C)[ detA~l...s k r 0} 

and set U ( a l , . . . ,  ak) = P r ( Y ( a l , . . . ,  ak)) and 

O ( a l , . . . ,  ak): U ( a l , . . . ,  ak)  --* C k• - C kin, 

[A] ~ Z = (Asl...~k)-lAsk+l...~n. 

It is easily checked that  this is a homeomorphism. Z is called the local  coordi -  

n a t e  of [A] �9 G(k, n) in the canonical coordinate neighborhood U(al, . . . ,  ak). 
Note that  for any Z �9 C kxm there must exist an n x n permutation matrix 

P(al , . . . ,  ak) such that  for the matrix A = (I (k), Z)P(al , . . . ,  ak) we have 

(43) Asl..-ak = I(k) and Ask+~...a, = Z. 

Hereafter l (k) denotes the unit k x k matrix. It follows from this fact that  

for another set of increasing integers 1 < /31 < . . .  < /3k <- n the transition 
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function O(/~1, . . .  , ~k) O O(Ot l , . . .  , O~k) -1  f rom O(o :1 , . . .  , OLk) (U(oL1 , . . .  , O~k) ) to  

O(/31,..., j3k)(U(/31,...,/~k)) is given by 

Z ---+ W = ( W/~x . . . / ~ k ) - Xw~k+l . . . ~n ,  

where (W~l.../3k, W~k+l ..Zn) ---- (I, Z)P(a l , . . . ,  ak)P'(f l l , . . . , /~k) .  It is not hard 
to check that  this transformation is biholomorphic. Thus 

(44) {(U(oQ,.. .  , a k ) , O ( a l , . . .  ,ak))] l  _< al  < ""  < ak <_ n} 

gives an atlas of the natural complex structure on G(k, n), which is called the 

canon ica l  atlas.  It is not hard to prove that  the canonical K/ihler form O " ( k ' n )  

on G(k, n) in such coordinate charts is given by 

tr[(I  (k) + Z-Z)- ldZ A (I (m) + Z ' Z ) - l d Z  '] : --~-1 0cSlog det(I(k) + ZZ') ,  
2 

where dZ = (dzij)l<_i<k,l<_j<_m and 0, c9 are the differentials with respect to the 

holomorphic and antiholomorphic coordinates respectively (cf. ILl). 

On the other hand, it is easy to see that 

Tk, n - -  V ~  O~ log de t (A] ' )  

: ~ 1  tr[_(A-A,)_ld A A -A'(A-A')-IAdA ' + (A-A')-ldA A dA'] 

is an invariant K~ihler form on M(k, n; C) under the left action of GL(k; C). 

Thus it descends to a symplectic form ?k,n on G(k,n;C). If A = (i(k), Z) it is 

easily checked that 

x / ~  tr[_(A-A,)_l dA A -A' (A-A')-I Ad]  ' + (A-A')-I dA A d]'] 
2 

= vfZ1 t r [ - ( I  (k) + Z-Z)- ldZ A Z'(I  (k) + Z-Z)-IZd-Z 
2 

+ (I (k) + Z-Z')-ldZ A d-Z'] 

= ~ tr[(I  (k) + Z-Z)- ldZ A (I (m) + -Zz)-ldZ'].  
2 

It follows that  ~k,n = a (k'n). Since Pr* ~k,n = Tk,n we arrive at 

(45) Pr* a (k'~) = Tk,~. 

As usual, if we identify z = (z11,.. . ,  Zlm, z21,..., z2m,... ,  Zkl, . . . ,  Zkm) �9 C km 
with the matrix Z = (Zij)l~i~_k,l<j<_m the standard symplectic form in C km 

becomes 

w (kin) = ~ tr[dZ A dZ']. 
2 
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Denote 

Then 

(46) 

S Y M P L E C T I C  I N V A R I A N T S  

M~ = {A e M(k,n;C)l A-X= i(k)}. 

Tk,n]MO(k,n;C) : 03(kin) [MO(k,n;C). 

39 

In fact, since AA' = I (k) we have that dA-A' + AdA' = 0 and thus 

xffZ1 tr[-(A-A')-l dA A-X(A-X)-IAd-A ' + ( A-A')-l dA A d-A'] 
2 

- ~ tr[dA A dA'] + ~ tr[dAA' A dAX]. 
2 T 

We want to prove the second term is zero. A direct computation yields 

k k n n 

tr[dAA' A dAX] = E E ( E  ~tjsdais) A ( E  ~isdajs) 
i=1 j = l  s-~l s = l  

k k n n 

= E E ( E  aisdajs) A ( E  (tjsdais) (interchanging i,j) 
j : l  i = l  s----1 s = l  

k k n n 

= -- E E ( E  F~jsdais)A ( E  aisdajs). 
i = l  j : l  s = l  s = l  

Hence tr[dAA' A dA-X] = 0. (46) is proved. 

LEMMA 4.1: For the classical domain of the first type (cs ILl) 

Rx(k, .~)  = {Z ~ Ck• I X (k) - Z~'  > 0}, 

the map 

�9 : ( R , ( k , . ~ ) , . ( k i n ) )  -~ ( c k •  Z ~ (t/~(~)- Z~I,z) 

is a symplectic embedding with image in M~ n; C), and therefore we get a 
symplectic embedding ~ = Pr o~ of ( Ri(k, m), w (kin)) into (G(k, n; C), a(k'~)). 

Proof: Differentiating 

- - I  k _ �9 z z  z-21+ z-2'= 

twice on both sides we get 

d~/I(k) - z-zI A d~/I(k) - Z'-Z = O. 
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This leads to 

d~(Z) A d~(Z)' = dZ A d-Z', i.e., ~*w (k'~) = w (kin). 

Using (45) and (46) we get that  the composition (~ = Pr o(I) yields the desired 

symplectic embedding from (RI (k, m), w (kin)) to (G(k, n; C), a(k"~)). | 

LEMMA 4.2: The open unit ball B2km(1) is contained in Rr(k, m). 

Proof: It is well known that for any Z E C k• with k < m (resp. k > m) 

there exist unitary matrices U of order k and V of order m such that  

UZV = (diag(A1,. . . ,  Ak), O) (resp. UZV = (d iag(# l , . . . ,  Pm), 0)') 

for some )~1 _> "'" >- Ak >_ 0 (resp. #1 _> "'" >_ #m --> 0), where diag(A1,. . . ,  Ak) 

(resp. d i ag (# l , . . . , #m) )  denote the diagonal matrix of order k (resp. m), and 

O is the zero matrix of order k • (m - k) (resp. (k - m) • m). Therefore, 

Z E Ri(k,m),  i.e., I (k) - ZZ '  > 0, if and only if Aj < 1, j = 1 , . . . , k  (resp. 

#i < 1, i = 1 , . . . , m ) .  Let Z E B2km(1). Then 

][ZH u -- ]zijJ 2 = t r (ZZ ' )  = E A2 (resp. E # ~ )  < 1, 
i=1 j----1 3=1 k = l  

and thus Aj < 1 (resp. #i < 1), i.e., Z E Rt(k, m). | 

Now Lemma 4.1 and Lemma 4.2 yield directly 

(47) WG(G(k,n),a (k,n)) > Wc(Rl (k ,m) ,w  (km)) > 7r 

for m = n - k. Moreover, for the submanifolds X (k,n) and y(k,n) of G(k, n) the 

computation in [SieT, Wi] shows ~L(k.n) O,3(pt; [X(k'n)], [Y(k'n)],pt) = 1. Thus 

(12) and Theorem 1.13 lead to 

(48) ~d;G(G(k,n),a (k,~)) <_ C(~)(G(k,n),a(k'n);pt, a) <_ a(k'")(L (k'n)) = 7r 

for a ---- IX (k'~)] or a = [y(k,~)] with k _< n - 2. Hence the conclusions follow 

from (47) and (48). Theorem 1.15 is proved. | 

Proof  of Theorem 1.16: Since ~L(k,.),O,3(pt; [X(k'~)], [Y(k'n)],pt) = 1 it follows 

from Proposition 7.4 that  

~a,o,3(pt; [M] • [X(~C'n)], [M] • [Y(k'n)],pt) r 0 
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for A = 0 x L (k'n), where 0 denotes the zero class in H2(M; Z). Theorem 1.13 

implies 
c(2O) ( ~% HZ ~"  x G(k,n),w@ (aa(k'~));pt,[M] x a) < lal~ 

for a = IX (k'n)] or a = [y(k,,)] with k <_ n - 2. This implies (20)�9 

For (21) we only prove the case r = 2 for the sake of simplicity. The general 
2 case is similar. Let us take A = (~i=1 L (k"" ' )  E H2(W,Z). Then fl(A) = 

(]al] + ]a21)r. Note that  

q~L(k, ,-0,0,3 (Pt; Pt,[ X(k''n')] , [y(k,,m)]) = k~L(k,,.,),0,3 (pt; pt, [y(k,,~,)], [X(k,,n,)]) 
= 1  

because the dimensions of [X (k',n')] and [y(k,n,)] are even for i = 1,2�9 

Proposition 7.7 gives 

IJJA,O,3(pt; pT~ , [X (kl'nl)] X [y(k2,n2)], [y(kl ,nl)] X [x(k2'n2)]) 

= ~L(kl,n,),0,3 (pt; pt,  IX  (kl'nl)], [y(k~,nl)], p t )  

�9 k~ir ' [y(k2,~2)], [x(k2,n2)]) = 1, 

�9 IX • [r(k,,n,)] x 

= k~i(k~,.~),O,3(Pt; pt,  [X(k~'n~)], [y(/c~,n~)]) 

�9 kOL(k:,=2),0,3(Pt; pt,  [X(k2'n2)], [y(k2,n2)]) = 1. 

As before it follows that  

c(2o)(w [x(k,,n~)] [y(k2,n2)]) 12(A) (lall + [a2l)~r, H Z ~ .. , f~; pt ,  X < = 

C(~z) (W,  ~; pt ,  IX (k''n')] x [X(k2'n2)]) <_ ~ (  A ) = (lal l + la21)=, 

c (2O) (w ,  f l ;p t ,  [y(k,,n,)] x [y(k=,n2)]) < ~2(A) = (lull + la2l)Tr, H z  

p r o v i n g  (21). 

To see (22) we assume r > 1 because of the result in Theorem 1.15�9 It 
immediately follows from (12) and (20) that  

W G ( G ( k l ,  n l )  x . . .  x G(kr ,  nr ) ,  a (k~'n~) @ . . .  @ a(k~,n~)) < ~r. 

On the another hand, by Lemma 4.1 we have a symplectic embedding from 

( R l ( k l , n l )  x . . .  x R l ( k ~ , n r ) , W  (k~n~) ~ . . .  @ co (k*n~)) to ( G ( k l , n l )  x . . .  x 

G ( k , ,  nr), a (k~'n~) @ ' "  ~ a(k~'n~)). Moreover, Lemma 4.2 implies that 

c R~(k~ ,n~)  x . . .  x R~(k~ ,n~) .  
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These give 

} / V G ( G ( k l , n l )  x . . .  x G(k r ,  n r ) , a  (kl 'nl) 0 "'" ~ o  "(kr'n~)) ~ 7[ 

and thus desired (22). I 

Proof of Theorem 1.17: Without  loss of generality we may assume a > 0. 

Firstly, as in the proof of Theorem 1.16 one shows that  

gJA,O,3(pt; [M x CPn], [M x pt],pt) # 0 

for A = [pt x Cp1], and thus arrive at 

(49) y-~(2o) { ~//- "~HZ ~'~ X c p n , w  | aan;pt, [M x pt]) < alr. 

Next we prove 

(50) CHz(M(2) x B2n(r) ,w•wo;pt , [Mxpt])  = C(H2)(M• pt). 

By Definition 1.2 it is clear that  the left side in (50) is less than or equal to 

the right side in (50). To see the converse inequality we take H E 7"~ad(M X 

B2"(r) ,a;  @ wo;pt, pt). Let P -- P(H)  and Q = Q(H) be the corresponding 

submanifolds in Definition 1.2. Since 

P c Q c In t (M x B2'~(r)) = M x Int(B2n(r)) 

and Q is compact there exists 7] E (0, r) such that  Q c M x B2n(r/). (Note 

that  here we use OM = 0.) Therefore, H may be viewed as an element of 

Tlad( M x B2~ ( r ) , w @ wo ; pt, [ M x pt] ) naturally. This implies that  the left side 

in (50) is more than or equal to the right side in (50). 

Thirdly, as in [HZ1, HZ2] one proves 

(51) r:(2) ~ ~/r _ " ~ H Z ~ "  X B 2 n ( r ) , w  G wo;pt, pt) > 7rr 2 

for any r > 0. By (49), Theorem 1.5 (v), (50) and (51) we can obtain 

_ f : ( 2 o )  f ~% aTr > ~ g z  ~'~ x c p n , w  G aa~; pt, [M x pt]) 

> m(2) r ~z 
- -  "JHZk" X CPn,w @ aa,; pt, [M x pt]) 

> r:(2) (^~ B2~(~v~),w G wo;pt, [M x pt]) 
-- vHZ~*~* • 

= C(~)z(M x B2n(av~) ,w @wo;pt, pt) 

7r ~2 a 
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for any 5 E (0, 1). Here we use the symplectic embedding (B2n(bv/~),Wo) 

(CP n, aa~) in the proof of Corollary 1.5 in [HV2] for any 0 < 5 < 1. Taking 

~ 1, we find that  for 5 = 1 the above inequalities are equalities. Together 

with Lemma 1.4 we obtain (23) and C ( M  x B2n(r),w �9 wo) =- 7rr 2 in (24). 

To prove the other equality of (24), i.e., C ( M  x z2n(r) ,w �9 wo) -- ~rr 2, 

note that  each H E 7-Lad(M X z2n(r) ,w G wo;pt, pt) can naturally be viewed 

as a function in 7-lad(M x B2(r) • ~2n--2/m~2n--2, W 0 ~0 0 Wst; pt, pt) for suf- 

ficiently large m > 0. Here wst is the standard symplectic structure on the 

tours ]R2n-2/mZ2~-2. It follows from the equality just proved in (24) that 

max H < ~rr 2 and so 

c(2o)( .  HZ ~lvi • Z2~(r),w |  pt) < 'xr 2 

for any r > 0. The desired conclusions easily follow. | 

In order to prove Theorem 1.21 we need the following lemma told to me by 

Professor Dusa McDuff and Dr. Felix Schlenk. 

LEMMA 4.3: For any two dosed symplectic manifolds (M, w) and (N, a), 

c(M • N, ~ | a) >_ c(M, w) + c(N, a) 

for c =- CHZ, C~ and CHZ , CHZ. 

According to Lemma 1.4 it suffices to prove Lemma 4.3 for CHZ and c~ . 

Let F and G be admissible functions on M and N, respectively. Since the 

Hamiltonian system for F + G  splits, we see that  F + G  is an admissible function 

on M x N. From this Lemma 4.3 follows at once. 

Proof of Theorem 1.21: We denote by (W,w) the product manifold in Theo- 

rem 1.21. Without loss of generality we may assume a~ > 0, i -- 1 , . . . ,  k. Let 

A~ = [CP 1] be the generators of H2(CP~' ;  Z), i = 1 , . . . ,  k. They are indecom- 

posable classes. Since [y(1,n0] = pt, it follows from the proof of Theorem 1.16 

that  

ql A,,O,3(pt; pt, pt, [x(l'nl)]) = 1 

for i = 1 , . . .~k.  Set A = A1 • . . .  • Ale. Note that  each ( C P ~ , a i a ~ )  is 

monotone. By Proposition 7.7 in the appendix we have 

~a,0,3 (pt; pt, pt, /3) = 1 

for some class/3 E H,(W,  Q). Thus by Corollary 1.19 we get that  

(52) c(W,w) <_ w(A) = (al + " "  + ak)Tr 
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for c = CHZ, C~ . On the other hand, Lemma 4.3 yields 

k 

c(W, w) >_ E c ( c p n "  aian~) ~ (al q-. . .  -b ak)r 
i=1 

for c = CHZ , C~ �9 II 

5. P r o o f  of  Theorems  1.22 and  1,24 

Proof of Theorem 1.22: Under the assumptions of Theorem 1.22 it follows from 

Remark 1.11 that the Gromov-Witten invariant 

* o gtA,g,m+~(Tr C, co, PD([w]), o~1,.. , OLm) ~ O, 

and thus Theorem 1.10 leads to 

C (2) ~M UZ, ,w;ao, PD([~])) < +co. 

For a sufficiently small e > 0 the well-known Lagrangian neighborhood theo- 

rem due to Weinstein [Wel] yields a symplectomorphism r from (U~, wcan) to 

a neighborhood of L in (M,w) such that e l l  = id. Since L is a Lagrange sub- 

manifold one can, as in [Lu3, V6], use the Poincar~-Lefschetz duality theorem 

to prove that there exists a cycle representative of PD([w]) whose support is 

contained in M \ r because w is exact near L. By (6) we get that 

(53) 
C H Z ( Ue , ~)can ; ol0, pt ) = 50, 

<_ C(~) ( M,w; ao, PD([w]) ) < +oc. 

Here we still denote by 5c the images in H,(U~,Q) and H,(~(U,),Q) of 50 

under the maps induced by the inclusions L ~ U~ and L ~-~ r Note that 

for any A # 0 the map 

r T*L ~ T*L, (q,v*) ~ (q, Av*), 

satisfies ~wr =/~03can.  Theorem 1.5 (iv), (53) and this fact imply that 

(2) ~ 
C H z ( V c  , O3can; ao,pt) < +co 

for any c > O. 
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In the case g = 0, since the inclusion L r M induces an injective homo- 

morphism 7h(L) ~ 7rl(M) and thus r ~ M also induces an injective 

homomorphism 7rl(r ~ 7rl (M) it follows from (8) that  

(2o) - ~(2o) CHZ (Ue, cocan; oq), pt) = vHZ (r co; &0, pt) 

<- vHZr:(2~ co; a0, PD([co])) < +0% 

f-y(2o) {rf 
and thus that  "~HZ wc ,  COcan; &O,pt) < +OC for any c > O. 

In particular, if L is a Lagrange submanifold of a g-symplectic uniruled 

manifold (M, co), then we can take a0 = pt and derive from (7) 

CHZ(Uc,COcan) : CHZ(Uc,cocan) < ~-00 

for any c > O, and from (9) 

e~ : Chz(Uc,coca. )  < +oo 

for all c > 0 if g = 0 and the inclusion L ~ M induces an injective homo- 

morphism Irl(L) ~ 7q(M). Here we use Lemma 1.4 and the fact that  Uc is 

a compact smooth manifold with connected boundary and of codimension zero 

because dim L > 2. 

To see the final claim note that  ( M , - w )  is also strong g-symplectic uniruled. 

It follows from Proposition 7.5 that  the product (M • M, ( -w)  @ w) is strong 

0-symplectic uniruled. By the Lagrangian neighborhood theorem there exists 

a neighborhood Af(A) C M • M of the diagonal A, a fiberwise convex neigh- 

borhood N'(Mo) C T * M  of the zero section M0, and a symplectomorphism 

r (JV'(A),(-w) •w)  ---+ (T*M, wcan) such that  r  = (x,O) for x �9 M. 

Note also that  the inclusion A ~ M x M induces an injective homomorphism 

7rl (A) --, ~rl (M x M).  The desired conclusion follows immediately. | 

Proof of  Theorem 1.24: The case dim M = 2 is obvious. So we assume that  

dim M _> 4. We follow [Bil]. Let p: L = u(N) ~ N be the symplectic normal 

bundle of N in (M, w). It may naturally be viewed as a complex line bundle 

with an obvious Sl-action 

t - ( b , v ) = ( b ,  e2'~tv), (b,v) E L  and t � 9  I = R / Z .  

Consider the projectivized bundle ~r: P ( L  (~ C) ~ N whose fiber at b E N is 

the complex projective space P(LD (9 C). This bundle has a natural Sl-action 

induced by the action t �9 z = e-2~ritz of S 1 on each fiber summand of C, i.e., 
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t .  (b, [v : z]) = (b, [v : e-2'~itz]). It has also two special sections, the zero section 

Zo = P({0}@C) and the infinity section Zoo = P(L|  One can construct an 

SLinvariant symplectic form on P(L@C).  Roughly speaking, fix any Hermitian 

metric I1" II on L and denote by PN : S (L)  = {(b,v) �9 L[Hvll = 1} ~ N the 

associated unit circle bundle of L. The latter is a principal Sl-bundle. Let 
S 1 m ]~/Z act on C P  1 and S(L)  • C P  1 by 

t .  [zo: z~] = [zo: e-2'~itzll, [zo: Zl] �9 C P  1, 

t . ( (b, v), [zo: Zl]) = ( (b, e -  2~U v), [z0: e -  27rit zl]) 

for (b,v) �9 S(L)  and t �9 S 1. Then the quotient manifold S(L)  x s l  C P  1 and 

P ( L  @ C) can be identified via the diffeomorphism induced by the projection 

~: S(L)  x C P  1 ~ P ( L |  C), ((b,v),[zo: zl]) H (b,[z0v: zl]). 

Under this identification one has Zo = S ( L ) x  s,  {[0: 1]} and Zoo = S(L)  xsl  {[1: 

0]}. If R v is the curvature of the Hermitian connection V on L, then PN := 

1 R v is a representing 2-form of the Chern class Cl(L). Choose 0 < ,ko < c so 

that 

Th :---- ('diN + ~PN 

are symplectic forms on N for all 0 < A _< A0. Let h: C P  1 ---+ [0, 1] be given by 

h ( [ z o  : z l ] )  = Izol/(Izol 2 + IZll2). Define a map 

Hho: S(L)  x8~ C P  1 ---* [0, ,ko], [(b,v), [zo: Zl]] H/koh([zo : Zl]). 

Then all level sets H~-ol(,k), ~ ~ {0, Ao}, are diffeomorphic to S(L) ,  and the 

only critical submanifolds of Hho are H~-ol(0) = Zo and H~-ol(A0) = Zoo. As 
in Example 5.10 in [McSal] (see also [MWo]) one gets an SLinvariant sym- 

plectic form who on P ( L  @ C) such that Zo, Z ~  and all fibers are symplectic 

submanifolds. More precisely, who IZo = WIN, ~Oho IZ~r = O21N + ~OPN and each 

fiber P ( L  | C)b = C P  1 is equipped with an SLinvariant symplectic form with 

corresponding moment map Aoh, i.e., AOWFS. Here WFS is the standard Fubini- 

Study form on C P  1 w i t h  fc.pl O3FS = 1. Furthermore, Zo has normal bundle in 

(P(L  @ C), Who) with first Chern class [PN] = cl (L), see the appendix in [MWo]. 

As in [Bill, from a transgression 1-form a v of the connection V on L \ 0 one 

can get a 1-form a �9 f~I(S(L)) such that da = --P*NPN and a ( X )  - 1, where 

X: S(L)  -+ T S ( L )  is the fundamental vector field of the above SLact ion on 

S(L) .  The first condition means that 7-I = Ker(a) is the horizontal distribution 

of the connection on S(L)  induced by V. By Exercise 5.11 in [McSal], under 
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the above identification P (L  @ C) = S(L) • CP 1, the symplectic form Who is 

induced by the Sl-invariant closed 2-form 

~ho :---- P*N(Ca[N) - -  hod(ha) + s 

on S(L) x CP 1. 
Set XL = P ( L  | C). Take an almost complex structure JN E J ( N ,  WIN ). By 

shrinking s > 0 we can assume that  JN is (W]N+APN)-tame for all 0 < A < s 

i.e., JN E J~(g, wlN+ APN). (This is not needed in the case of [Bil] because 

PN can be taken as WIN there.) Notice that  the above horizontal distribution 

7-/over S(L) naturally induces a horizontal distribution H = ~ ,  (7-t • 0) on XL. 
So TXL -- 7~ �9 ~, where V C TXL is the vertical subbundle whose fiber at 

q E X5 is Vq = Ker(dTr(q)) = Tq(XL),(q). Actually H is exactly the horizontal 

distribution on P (L  @ C) induced by the sum of the connection V on L and the 

trivial connection on C --~ N. Since ~ho = P*N (WIN + A0 hpN) + AO (WFS -- dh A a), 

it is not hard to check that  for any q E XL the subspaces 7~q and Vq are (Who)q- 
orthogonal. Similar to [Bill we construct an almost complex structure Jx on 

XL as follows; for any q E XL, Jx[~q is the horizontal lift of (Jg)q by the 

linear isomorphism d~r(q)l~ : 7tq ~ T~(q)N, and the restriction of Jx to the 

fiber (XL)~(q) = P(L.(q) | C) is the sum of the complex structure determined 

by the Hermitian metric I1" ]1 on L and of the standard one on C. This Jx is who- 

tame because Jg E J-r(N,w]g +/~PN) for all 0 < A _< Ao. One easily sees that  

the almost complex structure Jx is f ibred on XL in the sense of Definition 2.2 

of [Mc2]. Hence with Jx we can prove as in Lemma 2.3 of [Lu6] that  for the 

homology class F E H2(XL;Z) of a fibre of XL ~ N the Gromov-Witten 

invariant 
k~(XL ,'O~o) r~ t. F,0,3 ~,F, [Z0], [Zoc],Pt) = 1. 

That is, (XL,Who) is a strong 0-symplectic uniruled manifold in the sense of 

Definition 1.14. By Theorem 1.10 we have 

c(2o) HZ (ZL,Who;P t, [Zo~]) < GWo(Xg,who;Pt, [Zoo]) _< Who(F) = A0. 

Note that  for any 0 < /t < A0 the set {H), o <__ 5} is a smooth compact sub- 

manifold in XL with connected boundary and of codimension zero that  is a 

neighborhood of Z0 in XL. It is easily seen that  the inclusion {Hho <_ 8} C XL 
induces an injective homomorphism 7rl({Hho _< 5}) ,--* 7rl (XL). It follows from 

(9) that 
o ,.,(2o)/x- CHz({H:~o <_ 5},W),o) <_ t~HZ ~AL,Who;pt, [Zoo]) <_ A0. 
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Identifying N with the zero section 0 L and thus Z0 it follows from the symplectic 

neighborhood theorem that for 5 > 0 sufficiently small, ({H~ 0 _< 5},w~0) is 

symplectomorphic to a smooth compact submanifold W C M with connected 

boundary and of codimension zero that  is a neighborhood of N in M. Together 

with Lemma 1.4 we therefore get 

= Chz(W, ) <_ < c. 

The desired conclusion is proved. 

6. P r o o f  of  T h e o r e m  1.35 

The idea is the same as in [Ka]. We can assume that n/k _> 2. Following 

the notations in the proof of Theorem 1.15, notice that the canonical atlas on 

G(k,n) given by (44) has (~) charts, and that for each chart 

(O(Ol l , . . .  , OZk) , U ( o q , . . . ,  O~k) ) 

Lemma 4.1 yields a symplectic embedding ~al"'ak of (Ri(k ,m),w (kin)) into 

(G(k, n), a (k'n)) given by 

Z ~ [(V/I(k) - ZZ ' ,  Z)P(a l , . . . ,  ak)], 

where P ( a l , . . . , a k )  is the n x n permutation matrix such that (43) holds 

for the matrix B = (I (k ) , z )P(a l , . . . ,ak) .  
(X/I(k) - ZZ ' ,  Z ) P ( a l , . . . ,  ak) we have 

A~...~ k = V/I(k) - Z-Z and 

Note that 

and therefore 

Moreover, for the matrix A = 

Aotk+l...O~ n ~ Z .  

= A 2 A 2 HAIl 2 II ~l...~kll + II ~k+~...~.ll 

= tr(Aa~ akA~  ~k) + tr(A~k+l""a~ ~k+l...~.) 

= t r ( I  (k) - ZZ ' )  + t r (ZZ ' )  = k, 

A 2 - A 2 II  l.. kll = k II = k - I l Z l l  2. 

By Lemma 4.2 these show that ~l . . .~k (B2km(r)) is contained in 

(54) 
A ( a l , . . . , a k ; r )  

= {[B] �9 G(k,n) I for all A �9 [B] N M~ IIA,~l...,~kll 2 > k - r 2} 
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for any 0 < r _< 1. Note that k > 1 and n / k  > 2. There must be two disjoint 

subsets of {1, . . . ,  n}, say {cq, . . . ,  ak} and {/31,...,/3k}, such that al  < " "  < ak 

and/31 < ...  </3k. For any two such subsets we claim that 

. (B2km(1)) n  k(B2km(1)) = O. 

In fact, A(a l , . . .  ,ak; 1) and A(/31,... ,/3k; 1) are disjoint. Otherwise, let [B] 

belong to their intersection and take a representative A of [B] in M~ n; C). 

Then 

k _> II 2 + II 2 > 2 k  - 2 

by (54). This contradicts the assumption that k >__ 2. Now the conclusion 

follows from the fact that there exist exactly In~k] mutually disjoint subsets of 

{1, . . . ,  n} consisting of k numbers. | 

Proo[o[ (27): Notice that G(k,  n) can be embedded into the complex projective 

space C P  N with N = n ! / ( n  - k)!k! - 1 by the Pliicker map p ([GH]), and that 

for any/-dimensional subvariety X of C.P N one has 

Vol(X) = deg(X). Vol(L) 

with respect to the Fubini-Study metric, where L is an /-dimensional linear 

subspace o f C P  g (cf. [Fu, p. 384]). But it was shown in Example 14.7.11 of [Fh] 

that 
1!. 2!.. .  ( k -  1)!. ( k ( n -  k))! 

d e g ( p ( G ( k , n ) ) )  = ( n -  k)! . ( n -  k + 1)!... ( n -  1)!" 

It is well-known that the volume of a k (n  - k)-dimensional linear subspace L of 
C P  N is 

~rk(n-k) 
Vol (Cpk (n -k ) )  = (k(n  - k))!" 

These give (27). | 

7. Appendix :  The  G r o m o v - W i t t e n  invariants  of  p r o d u c t  manifolds 

In this appendix we collect some results on Gromov-Witten invariants needed 

in this paper. They either are easily proved or follow from the references given. 

Let (V, w) be a closed symplectic manifold of dimension 2n. Recall that for a 

given class A 6 H2(V; Z) the Gromov-Witten invariant of genus g and with k 

marked points is a homomorphism 

~v " H,(Mg,k;Q) • H , ( V ; Q )  k --~ Q, A,g,k" 
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where 2g + k _> 3 and z~49,k is the space of isomorphism classes of genus g 

stable curves with k marked points, which is a connected K~ihler orbifold of 

complex dimension 3 g -  3 + k. In [Lu8] we used the cohomology H*(V;Q) 

with compact support and the different notation P.1/Y (~'' 'J) to denote the GW- A,g,k 
invariants, since we also considered noncompact symplectic manifolds for which 

the dependence on further data  needs to be indicated. For closed symplectic 

manifolds we easily translate the composition law and reduction formulas in 

[Lu8] into the homology version, which is the same as the ones in [RT2]. Let 

integers gi >_ 0 and ki > 0 satisfy 2g~ + ki _> 3, i = 1, 2. Set g = gl + g2 and 

k -- kl + k2 and fix a decomposition S = $1 U $2 of (1 , . . .  ,k} with ISil = ki. 

Then there is a canonical embedding 

(55) OS: .A~gl,kl + l X .A/lg2,k~+ l --~ .A/[g,k , 

which assigns to marked curves (Ei;x~, . .  i .,Xkz+l), i ---- 1,2, their union 

E1 U E2 with xlkl+1 and xk:+ 1 2  identified and the remaining points renumbered 

by {1 , . . . ,  k} according to S. Let 

I 

Pg,k: J ~ g - l , k + 2  ~ J~g,k 

be the map corresponding to gluing together the last two marked points. It is 

continuous. Suppose that  {/3b}i=l is a homogeneous basis of H,(V; Z) modulo 

torsion, (~ab) its intersection matrix and (~l ab) = (~ab) -1. 

COMPOSITION LAW: Let 

[Ki] C H,(Mg~,k~+I;Q), i = 1,2, [K0] E H,(-Mg-I ,k+2;Q) 

and A E H2(V;Z). Then for any a l , . . . , a k  in H, (V;Q)  we have 

�9 Y,g,k(Os,([K1 • K2]); a , , . . . ,  ak) = (-1)  c~ E~k:l cod(~) 

E EkoV~,g~, k~+l([Kl]; ((~iii<-k~'~a)~IabffjV:,g :,k2+l([K2];~b' (C~j}j>k~)' 
A=AI+A2 a,b 
�9 v �9 , ~A,g_l ,k+2([Ko];al , . . . ,  ak, ~,,/~b)~l "b. 

a~b 

Remark t h a t  (--1) c~176 1 dim(K:)~-~iklldim(al) = ( - )  = because the 

dimensions of 2~dg~,k~+1 and V are even. Denote the map forgetting the last 

marked point by 

7~ k : J~ g,k -"+ ./~ g,k-1. 
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REDUCTION FORMULA: Suppose that (g, k) r (0, 3), (1, 1). Then 

(i) for any a l , . . .  ,ak-1 in H,(V;Q)  and [K] E H,(A/Ig,k;Q) we have 

(56) 
�9 ~,~,k([K]; a l , . . . ,  ak-1,  [V]) = ~ ,g ,k_ l ( (~k) , ( [K] ) ;  a l , . . . ,  ak_~); 

(ii) if  ak E H2n-2(V;•) we have 

(57) 
�9 AY,g,k([ZCk 1 (K)]; a l , . . . ,  ak) = PD(ak)(m)q~YA,g,k_l([K]; a l , . . . ,  ak-1). 

LEMMA 7.1: Let (V, w) be a closed symplectic manifold, {t3b}L_l a homogeneous 

basis of H,  (V; Z) modulo torsion as in the composition law above. Suppose that 

there exist homology classes A E H2(V;Z), a l , . . .  ,am e H,(V;Q)  and g > 0 

such that 

(58) r a l , . . . ,  am) ~ 0. 

Then for each nonnegative integer g' < g we have 

V 
~A,g',m+2s(Pt' a l , . . . ,  am,J~al,~bl,''',~as,]~bs) # 0 

for s ---- g - g' and some/~a~,/3b~ in {fib}L_1, i = 1 , . . . ,  S. 

Proo~ By the composition law for Gromov-Witten invariants we have 

~ V g , m ( p t ;  O~x,. .. , a m )  -~ (~Vg ,m( (#g ,m) , (p t ) ;  a l , . .  . , a m )  

V =- ~ kO A,g_l,m+2(pt; a l , . .  ., am, Za,/~b)r] ab. 
a,b 

By (58), the left side is not equal to zero. So there exists a pair (a, b) such that 

�9 v g_~ ,m+: (p t ;~ , . . .  ,am,~, , /~b) # 0. 

If g - 1 > g' we can repeat this argument to reduce g - 1. After s = g - g' steps 
the lemma follows. | 

LEMMA 7.2: Let (V,w) and {~b}L_l be as in Lemma 7.1. Suppose that there 
exist homology classes 

A C H2(V;Z) ,~I , . . . ,~k  e H , (V;Q)  

such that 

and [K] c H , (Mg,k ;Q ) 

(59) k~AV,9,k([K]; ~1, . . . ,  ~k) ~ 0 
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for some integer g >_ O. Then for each integer m > k we have 

m--k 

ffJv,g,m([K1]; ~1, . . . ,  ~k, ~PD([w]),... ,  PD([w])) # O. 

Here K1 = (7Ira) -1  O . . . O  (Trk+l)-l(K). 

Proof." Using the definition of the GW-invariants, it follows from (59) that 

2g + k > 3 and that the space A4g,k(V, J, A) of k-pointed stable J-maps of 

genus g and of class A in V is nonempty for generic J E J (V ,  w). In particular, 

this implies w(A) ~ 0. Applying the reduction formula (57) to (59) we have 

V -1 ~A,g,k+l ([Trk+ 1 (K)]; ~1,..., ~k, PD([w])) = w(A). ~AY,9,k ([K]; ~1, . . . ,  ~k) ~ 0. 

Continuing this process m - k - 1 times again we get the desired conclusion. 

1 

PROPOSITION 7.3: For a closed symplectic manifold (V,w), if there exist ho- 

mology classes A C H2(V;Z) and ai E H, (V;Q) ,  i = 1 , . . . , k ,  such that the 

Gromov- Witten invariant 

(60) ~A,g,k+l(pt;pt, O Q , . . . ,  ~k) ~ 0 

for some integer g >_ O, then there exist homology classes B E H2(V;Z)  and 

31,32 E H,(V;Q) such that 

(61) g2B,o,3(pt; pt,/~1,/~2) r O. 

Consequently, every strong symplectic uniruled manifold is strong O-symplectic 

uniruled. 

(61) implies that B is spherical. In fact, in this case there exists a 3-pointed 

stable J-curve of genus zero and in class B. By the gluing arguments we can 

get a J-holomorphic sphere f:  C P  1 ~ M which represents the class B. That 

is, B is J-effective. So B is necessarily spherical; cf. page 67 in [McSa2]. 

Proof of Proposition 7.3: By Lemma 7.1, we can assume g = 0 in (60), i.e., 

(62) q~A,O,k+l(pt;pt, a l , . . . ,  ak) ~ O. 

This implies that k + 1 _> 3 or k >_ 2. If k = 2 then the conclusion holds. If 

k = 3 we can use the reduction formula (56) to get 

ff2A,O,5(pt;pt, a l , . . . ,  ~3, IV]) = ff2A,O,4(pt;pt, a l , . . . ,  a3) ~ 0. 
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F 

Therefore we can actually assume that k > 4 in (62). Since AAo,m is connected 

for every integer m >__ 3, H0(A/[0,m, Q) is generated by pt. For the canonical 

embedding 0s as in (55) we have Os.(pt • pt) = pt. Hence it follows from the 

composition law that 

kOA,0,k+l (pt; pt, cq , . . . ,  c~k) 

abko = E E ~Ai'O'4(pt;pt'oq'o~2'~a)?7 A2'O'k-l(pt;flb'Ol3'''''O~k) 
A=AI+A2 a,b 

because cod(K2) = cod(pt) is even. This implies that 

(63) q~ n~,o,4(pt; pt, al, ~2, /3a) ~ 0 

for some A1 E H~(V;Z) and 1 < a < L. By the associativity of the quantum 

multiplication, 

II/A 1 ,o,4 (pt; pt, &l , (~2, /3a) = 

=l= E E q2All'O'3(pt;pt'al'el)q2A12'O'3(pt; fl,a2,/3a) 
Al=All+A12 l 

where {et}z is a basis for the homology H,(M;Q)  and {ft}t is the dual basis 

with respect to the intersection pairing; see (6) in [Mc2]. It follows from this 
identity and (63) that 

~JAll,0,3(pt;pt, O~1, el) r 0 

for some I. Taking B = A l l  we get (61). II 

PROPOSITION 7.4: Let (M,w) and (N, a) be two closed symplectic manifolds. 
Then for every integer k >_ 3 and homology classes A2 E H2(N; Z) and ~3~ E 
H.(N;Q),  i - 1 , . . . ,k ,  

~ M x N  I t rM1 ~ . ,  O~A2,0,ktP ;[ 1| "'" [M] |174  = tIsN2,0,k(pt;/71,.. ~k), 

where 0 E H2(M; Z) denotes the zero class. 

Proof: Take JM E fl(M, w), Jg E J ( N ,  a) and set J = JM • Jg. Note that 

the product symplectic manifold (M x N, w | a) is a special symplectic fibre 

bundle over (M, w) with fibres (N, a). Moreover, the almost complex structure 

J = JM • JN on M • N is f ibred in the sense of Definition 2.2 in [Mc2]. 

So for a fibre class 0 | A2 we can, as in the proof of Proposition 4.4 of [Mc2], 

construct a virtual moduli cycle Mo,3 (M • N, J, 00 A2) of M0,3 (M • N, J, 0oA2) 
such that the M-components of each element in Mo,3(M x N, J, 0 �9 A2) are 
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JM-holomorphic, and thus constant. This shows that the virtual moduli cycle 

Mo,3(M x N, J, 0 | A2) may be chosen as M z Mo,3(N, JN, A~). The desired 

conclusion follows. These techniques were also used in the proof of Lemma 2.3 

in [Lu6]. We refer to there and w in [Me2] for more details. I 

As a direct consequence of Proposition 7.3 and Proposition 7.4 we get 

PROPOSITION 7.5: The product of a closed symplectic manifold and a strong 

symplectic uniruled manifold is strong O-symplectic uniruled. In particular, the 

product of finitely many strong symplectic uniruled manifolds is also strong 

O-symplectic uniruled. 

Actually, we can generalize Proposition 7.4 to a symplectic fibre bundle over 

a closed symplectic manifold with a closed symplectic manifold as fibre. There- 

fore, a symplectic fibre bundle over a closed symplectic manifold with a strong 

symplectic uniruled fibre is also strong symplectic uniruled. 

In the proof of Theorem 1.21 we need a product formula for Gromov-Wit ten 

invariants. Such a formula was given for algebraic geometry GW-invariants 

of two projective algebraic manifolds in [B]. However, it is not clear whether 

the GW-invariants used in this paper agree with those of [B] for projective 

algebraic manifolds. For the sake of simplicity we shall give a product formula 

for a special case, which is sufficient for the proof of Theorem 1.21. Recall that  

a symplectic manifold (M, w) is said to be m o n o t o n e  if there exists a number 

A > 0 such that  oJ(A) = Acl(A) for A E 7r2(M). The m i n i m a l  C h e r n  n u m b e r  

N _> 0 of a symplectic manifold (M,w) is defined by (Cx,Tr2(M)) -- NZ. For 

J E f f(M,w),  a homology class A E H2(M,Z)  is called J -ef fec t ive  if it can be 

represented by a J-holomorphic sphere u: C P  1 ~ M. Such a homology class 

must be spherical. Moreover, a class A E H2(M, Z) is called i n d e c o m p o s a b l e  

if it cannot be decomposed as a sum A = A1 + . . .  + Ak of classes which are 

spherical and satisfy w(Ai) > 0 for i = 1 , . . . ,  k. 

PROPOSITION 7.6: Let the closed symplectic manifold (M, w) either be mono- 

tone or have minimal Chern number N > 2. Then for each indecomposable 

class A E H2(M, 7.) and classes ai E H . ( M , Z ) ,  i = 1, 2, 3 the Gromov-Witten 

invariant ~,0 ,3(p t ;  Ctl, c~2, a3) adopted in this paper agrees with the invariant 

�9 in of [McSa2]. 

Proo~ Let J E f f (M, co). Consider the space AJo,3(M,A,J) of equivalence 

classes of all 3-pointed stable J-maps of genus zero and of class A in M. For 

[f] E Ado,3(M, A, J) ,  since A is indecomposable it follows from the definition of 

stable maps that  f = (N; zl, z2, z3; f )  must be one of the following four cases: 
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(b) 

SYMPLECTIC INVARIANTS 55 

The domain E -- C P  1, zi, i = 1,2, 3 are three distinct marked points on 

E, and f:  E ~ M is a J-holomorphic map of class A. 

The domain E has exactly two components E1 -- C P  1 and E2 = C P  1 

which have a unique intersection point, f l~l  is nonconstant and E1 only 

contains one marked point, flz2 is constant and E2 contains two marked 

points. 

(c) The domain E has exactly two components E1 = C P  1 and E2 = C P  1 

which have a unique intersection point, flr~l is nonconstant and E1 con- 

tains no marked point, f i r2  is constant and E2 contains three marked 

points. 

(d) The domain E has exactly three components E1 = C P  1, E2 = C P  1 and 

E3 = C P  1. E1 and E2 (resp. E2 and E3) have only one intersection point, 

and E1 and ~]3 have no intersection point, f lz i  is nonconstant and E• 

contains no marked point, fl~2 is constant and E2 contains one marked 

point, flz3 is constant and Y]3 contains two marked points. 

Let J~I0,3(M, A, J)i ,  i = 1, 2, 3,4 be the subsets of the four kinds of stable 

maps. It is easily proved that for generic J E J ( M ,  w) they are smooth mani- 

folds of dimensions 

dim J~Io,3(M, A, J ) l  = dim M + 2ca (A), 

dim J~4o,3(M, A, J)2 = d i m M  + 2c1(A) - 4, 

d imMo,3(M,  A, J)3 = d i m M  + 2ca(A) - 6, 

dim A4o,3(M, A, J)4 = d i m M  + 2c1(A) - 6. 

So ~ o , 3 ( M ,  A, J)  = [.J4=1 M0,3(M, A, J) i  is a stratified smooth compact mani- 

fold. Note that each stable map in Ad0,3(M, A, J)  has no free components. The 

construction of the virtual moduli cycle in [Lu8] with Liu-Tian's method in 

[LiuT] is thus trivial or not needed: The virtual moduli cycle of ,tcl0,3(M, A, J)  

may be taken as 
~ o , 3 ( M ,  A, J)  ~ B M 0,3,A, [f] H [f], 

where B M is the space of equivalence classes of all 3-pointed stable L T M  0,3,A 
maps of genus zero and of class A in M. Therefore for homology classes c~i E 

H2(M, Z), i = 1, 2, 3, satisfying the dimension condition 

deg(c~l) + deg(c~2) + deg(~3) -- 2n + 2c1(A) 

the Gromov-Wit ten invariant 

~AM,0,3 (Pt; (~1, a2, a3) J,A = (EVo,3)" (~1 x ~2 • ~3) 
(64) J,A 

= (EVo,3)[~o,3(M,A,ah " (~1 • ~2 x ~3) 
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because the intersections can only occur in the top strata. Here 

(65) I~MJ'A ~--0,3 : Mo,3(M, A, J)  ~ M 3, [f] ~ (f(zl) ,  f(z2), f(z3)), 

and ai  : Ui ~ M are generic pseudocycle representatives of the classes ai, 

i = 1, 2, 3; cf. [McSa2] for details. Note that each element [f] in AJ0,3(M, A, J ) l  

has a unique representative of the form (CP1; 0, 1, oc; f) .  So ~0 ,3 (M,  A, J ) l  

may be identified with the space .hi (M, A, J)  of all J-holomorphic curves which 

represent the class A. Fix marked points z = (0, 1, co) E (Cp1) 3 and define the 

evaluation map 

(66) EA,j,z: M ( M ,  A, J) ~ M 3, f ~ (f(0), f(1),  f (cc)) .  

From the above arguments one easily checks that it is a pseudocycle in the sense 

of [McSa2]. Then (64) gives rise to 

(67) qY~,0,3(Pt; a l ,  a2, a3) = EA,j,z" (~1 x ~2 • ~3)  = II/AM,3(Oll, OL2, Ol3) 

because we can require that ~1 • ~2 • ~3 is also transverse t o  EA,j,z. | 

PROPOSITION 7.7: Consider closed symplectic manifolds ( Mk, wk ) as in Propo- 

sition 7.6 and indecomposable classes Ak E H2( Mk, Z), k = 1 , . . . ,  m. Then for 

al k) E H . ( M k , Z ) ,  i = 1,2,3 and k = 1, . . .  , m  we have the Gromov-Wit ten  

invariant 

(68) 

where A m = @k=l Ak. 

fi~T~Mk , (k) (k) (k)~ ~Ak,0,3iP~;Ol 1 ,O: 2 ,O~ 3 ), 
k=l  

m k=lWk). Take Jk E J (Mk,wk) ,  k 1 , . . . , m  Proo~ Set (M,w) = (Xk=lMk, x m = 

and set J = x'~=lYk. Then J E J ( M , w ) .  It is not hard to prove that  for 

generic Jk C /7(Mk,wk) the space M o , 3 ( M , A , J )  is still a stratified smooth 

compact manifold. We still denote by J~o,3(M, A, J ) l  its top stratum, which 

consists of elements If] C ,h/~0,3(M, A, J)  whose domain has only one component 

CP  1. It is a smooth noncompact manifold of dimension dim M + 2cl (A) = 
~km__l dim Mk + 2cl (Ak), and each element [f] E Jk4o,3(M, A, J ) l  has a unique 

representative of the form 

f = (Cp1;0, 1 , ~ ; f  = ( f l , . . . , f r o ) ) ,  
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where fk : CP  1 ~ Mk are J-holomorphic maps in the homology classes Ak, k -- 

1 , . . . ,  m. Note that the other strata of AA0,a(M, A, J)  have at least codimension 

two. For homology classes 0:1 k) C H, (Mk,Z) ,  i = 1,2,3 and k : 1 , . . . , m ,  

satisfying the dimension condition 

deg(a~ k)) + deg(0:~ k)) + deg(0:~ k)) = dimMk + 2cl(Ak), 

we may choose the pseudo-cycle representatives ~}k): U(k) ~ M, i = 1, 2, 3 and 

k = 1 , . . . , m  such that: 

,x,~ _(k), (x~=fi~  k)) is transverse to the evaluations (i) (x~_f i~  k)) x ( k=la2 ) X _ 
EVJ: A in (65) and E A , J , z  in (66), 

(ii) each ~i  k) x ~k)  x K~k) is transverse to the evaluations EAk,&,~ and 

E xrJk'Ak ~ o  a(Mk, Ak, Jk) --~ M s --o,s : , k, [fk] ~ (fk(O),fk(1),fk(oc)) 

f o r k = l , . . . , m .  

Then as above we get that  the Gromov-Witten invariant 

(69) 

kOAM0,3(pt; m ~ ( k ) v m  ~(k)X~n=10:~k)) X k : l ~ l  , A k = l ~ 2  
J ,A  ( (X~n_ l~k ) )  • z .m __(k), rn ~(k),~] 

: (EVo, 3 )" _ IXk=10:2 ) X ( X k = l ~  3 }] 

J ,A  m - - ( k )  
= • • 

m --(k) 
: E A , J ,  z " ( ( •  • ( x ~ n : l ~  k)) X ( •  

because of (67). Note that A4(M, A, J) = 1-Ikml A4(Mk, Ak, Jk). It easily 
follows from the above (i) and (ii) that 

, / x m  --(k) EA J,z' (()<kn_l~[k))X(Xkn--l~ k)) X ~ k=10:3 )) 
m 

k=l 
m 

: H~t'~ r~(k) (k) (k), X A k , 3 \ ~ l  ' 0:2 ' 0:3 ) 
k= l  

~I~TjMk r~§ (k) (k), = XAk,0,3\/ '~' tXl ~ 0/2 ' 0:3 }" 
k=l  

The final step comes from Proposition 7.6. This and (69) lead to (68). | 
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