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ABSTRACT

We introduce the concept of pseudo symplectic capacities which is a mild
generalization of that of symplectic capacities. As a generalization of the
Hofer—Zehnder capacity we construct a Hofer—Zehnder type pseudo sym-
plectic capacity and estimate it in terms of Gromov-Witten invariants.
The (pseudo) symplectic capacities of Grassmannians and some product
symplectic manifolds are computed. As applications we first derive some
general nonsqueezing theorems that generalize and unite many previous
versions, then prove the Weinstein conjecture for cotangent bundles over a
large class of symplectic uniruled manifolds (including the uniruled man-
ifolds in algebraic geometry) and also show that any closed symplectic
submanifold of codimension two in any symplectic manifold has a small
neighborhood whose Hofer-Zehnder capacity is less than a given positive
number. Finally, we give two results on symplectic packings in Grass-
mannians and on Seshadri constants.
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1. Introduction and main results

Gromov-Witten invariants and symplectic capacities are two kinds of impor-
tant symplectic invariants in symplectic geometry. Both have many important
applications. In particular, they are related to the famous Weinstein conjec-
ture and Hofer geometry (cf. [En, FrGiSchl, FrSchl, HZ2, HV2, LaMc1, LaMc2,
LiuT, Lul, Lu2, Lu3, Lu5, Lu7, Lu9, Mc2.Mc3, McSl, Pol,Po2, Po3, Schl, Schw,
V1, V2,V3, V4, We2] etc.). For some problems, Gromov-Witten invariants are
convenient and effective, but for other problems symplectic capacities are more
powerful. In the study of different problems different symplectic capacities were
defined. Examples of symplectic capacities are the Gromov width W ([Gr]), the
Ekeland-Hofer capacity cgy ([EH]), the Hofer-Zehnder capacity cyz ([HZ1])
and Hofer’s displacement energy e ([H1]), the Floer-Hofer capacity crp ([He])
and Viterbo's generating function capacity cy ([V3]). Only Wg, cuz and e are
defined for all symplectic manifolds. In [HZ1] an axiomatic definition of a sym-
plectic capacity was given. The Gromov width Wg is the smallest symplectic
capacity. The Hofer-Zehnder capacity is used in the study of many symplec-
tic topology questions. The reader can refer to [HZ2, McSal, V2] for more
details. But to the author’s knowledge the relations between Gromov-Witten
invariants and symplectic capacities have not been explored explicitly in the lit-
erature. Gromov-Witten invariants are defined for closed symplectic manifolds
([FO, LiT, R, Sie]) and some non-closed symplectic manifolds (cf. [Lud4, Lu8})
and have been computed for many closed symplectic manifolds. However, it
is difficult to compute cgyz for a closed symplectic manifold. So far the only
examples are closed surfaces, for which cgz is the area ([Sib]), and complex pro-
jective space (CP", 0,,) with the standard symplectic structure o, related to the
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Fubini-Study metric: Hofer and Viterbo proved cgz(CP",0,) = 7 in [HV2].
Perhaps the invariance of Gromov-Witten invariants under deformations of the
symplectic form is the main reason why it is easier to compute them than Hofer-
Zehnder capacities. Unlike Gromov-Witten invariants, symplectic capacities do
not depend on homology classes of the symplectic manifolds in question. We
believe that this is a reason why they are difficult to compute or estimate, and it
is based on this observation that we introduced the concept of pseudo symplectic
capacities in the early version [Lub] of this paper.

1.1 PSEUDO SYMPLECTIC CAPACITIES. In [HZ1] a map c from the class C(2n)
of all symplectic manifolds of dimension 2n to [0, +o00] is called a symplectic
capacity if it satisfies the following properties:

(monotonicity) If there is a symplectic embedding (M7,w;) — (Mz,ws) of
codimension zero then ¢(M;,w;) < ¢(Ma,ws);

(conformality) c(M, dw) = |A|e(M,w) for every A € R\ {0};

(nontriviality) ¢(B?*(1),wp) = 7 = ¢(Z2(1), wp).
Here B?"(1) and Z?"(1) are the closed unit ball and closed cylinder in the
standard space (R?",wp), i.e., for any r > 0,

B™(r) = {(z,y) € R™| [2* + |y* < r*}

and
Z2"(r) = {(z,y) € R2"| xf + y% < 7"2}.

Note that the first property implies that ¢ is a symplectic invariant.

Let H.(M;G) denote the singular homology of M with coefficient group G.
For an integer k > 1 we denote by C(2n, k) the set of all tuples (M, w; a1, ..., o)
consisting of a 2n-dimensional connected symplectic manifold (M,w) and
nonzero homology classes a; € H.(M;G), 1 = 1,...,k. We denote by pt the
homology class of a point.

Definition 1.1: A map ¢*) from C(2n,k) to [0,+00] is called a Gx-pseudo
symplectic capacity if it satisfies the following conditions.
P1. Pseudo monotonicity: If there is a symplectic embedding ¢: (Mi,w;)
— (Ms,w2) of codimension zero, then for any o; € H,(My;G) \ {0},
i=1,...,k,

BN My, wr e, .. k) < B (Ma,wo;u(ar), . ., ula)).

P2. Conformality: c®) (M \w;ay,...,ax) = |Ac®(M,w;a,...,04) for
every A € R\ {0} and all homology classes oy € H.(M;G)\ {0}, i =
...,k
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P3. Nontriviality: c¢*)(B?*(1),wq; pt,...,pt) =7
= c(k)(Zzn(l),wo;pta v 7pt)

The pseudo monotonicity is the reason that a pseudo symplectic capacity
in general fails to be a symplectic invariant. If k¥ > 1 then a Gy_;-pseudo

(k=1)

symplectic capacity ¢ is naturally defined by

c(k_l)(Mvw; Apyeeey ak—l) = c(k)(M,w;pt, Q... 7ak—1)7
and any c¢*) induces a true symplectic capacity
c(O)(M, w) = c(k’)(M,w;pt, ..., pt).

In this paper we shall concentrate on the case k = 2 since in this case there
are interesting examples. More precisely, we shall define a typical G3-pseudo
symplectic capacity of Hofer-Zehnder type and give many applications. In view
of our results we expect that pseudo symplectic capacities will become a powerful
tool in the study of symplectic topology. Hereafter we assume G = Q and often
write H,(M) instead of H.(M;Q).

1.2 CONSTRUCTION OF A PSEUDO SYMPLECTIC CAPACITY. We begin with
recalling the Hofer-Zehnder capacity from [HZ1]. Given a symplectic manifold
(M,w), a smooth function H: M — R is called admissible if there exist a
nonempty open subset U and a compact subset K C M \ 8M such that

(a) H|y =0 and H|p\x = max H;

(b) 0 < H < max H;

(¢) ¢ = Xpy(z) has no nonconstant fast periodic solutions.
Here Xy is defined by w(Xg,v) = dH(v) for v € TM, and “fast” means “of
period less than 1”. Let Hqq(M,w) be the set of admissible Hamiltonians on
(M,w). The Hofer-Zehnder symplectic capacity cuz(M,w) of (M, w) is defined
by

cuz(M,w) = sup{max H| H € Hqa(M,w)}.

Note that one can require the compact subset K = K{H) to be a proper subset
of M in the definition above. In fact, it suffices to prove that for any H €
Hea(M,w) and € > 0 small enough there exists a He € Hqq(M,w) such that
max H, > maxH — ¢ and that the corresponding compact subset K(H,) is
a proper subset in M. Let us take a smooth function f.: R — R such that
0< fi(t)<land f(t) =0ast <0,and f(t) =maxH —east>maxH —e.
Then the compesition f. o H is a desired H..
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The invariant cyz has many applications. Three of them are: (i) giving a new
proof of a foundational theorem in symplectic topology — Gromov’s nonsqueez-
ing theorem; (ii) studying the Hofer geometry on the group of Hamiltonian
symplectomorphisms of a symplectic manifold; (iii) establishing the existence of
closed characteristics on or near an energy surface. As mentioned above, the dif-
ficulties in computing or estimating cyz(M,w) for a given symplectic manifold
(M,w) make it hard to find further applications of this invariant. Therefore, it
seems to be important to give a variant of ¢yz which can be easily estimated
and still has the above applications. An attempt was made in [McSl]. In this
paragraph we shall define a pseudo symplectic capacity of Hofer-Zehnder type.
The introduction of such a pseudo symplectic capacity was motivated by various
papers (e.g., [LiuT, McSl]).

Definition 1.2: For a connected symplectic manifold (M,w) of dimension at
least 4 and two nonzero homology classes ag, e € H,(M;Q), we call a smooth
function H : M — R (g, 0 )-admissible (resp. (ap, @ )°-admissible) if
there exist two compact submanifolds P and @ of M with connected smooth
boundaries and of codimension zero such that the following condition groups
(1)(2)(3)(4)(5)(6) (resp. (1)(2)(3)(4)(5)(6°)) hold:
(1) PCInt(Q) and Q C Int(M).
(2) H|p =0 and H|pp\1nt(@) = max H.
(3) 0< H <maxH.
(4) There exist cycle representatives of cp and @, still denoted by ag, @,
such that supp(ag) C Int(P) and supp(a) C M\ Q.
(5) There are no critical values in (0,) U (max H — ¢, max H) for a small
e=¢(H)>0.
(6) The Hamiltonian system # = Xpg(z) on M has no nonconstant fast
periodic solutions;
(6°) The Hamiltonian system & = Xg(z) on M has no nonconstant con-
tractible fast periodic solutions.

We respectively denote by
(]‘) Had(M)w;a07a00) and 'sz(M,w;ag,aoo)

the set of all (ap, @ )-admissible and (o, @ )’-admissible functions. Unlike
Hea(M,w) and HS, (M, w), for some pairs (oo, @) the sets in (1) might be
empty. On the other hand, one easily shows that both sets in (1) are nonempty
if ap and o, are separated by some hypersurface S C M in the following sense.
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Definition 1.3: A hypersurface S C M is called separating the homology
classes o, 0o € Hi(M) if (1) S separates M in the sense that there exist two
submanifolds My and My, of M with common boundary S such that MyUM,, =
M and My N My =S, (ii) there exist cycle representatives of ap and ay with
supports contained in Int(Mp) and Int(M,,) respectively, (iii) My is compact
and OMy = S.

Without special statements a hypersurface in this paper always means a
smooth compact connected orientable submanifold of codimension one and with-
out boundary. Note that if M is closed and a hypersurface S C M separates
the homology classes ap and a, then S also separates oo, and ag.

We define

(2) C’ (2) (M,w;ao,aoo) = sup{max H|H € Hqq(M,w; a0, 0x)},
0(20 (M,w; ap, 000) := sup{max H| H € H,(M,w; ap, aoo) }-

Hereafter we make the conventions that sup® = 0 and inf @ = +c0. As shown
in Theorem 1.5 below, C§1 ~ is a Gz-pseudo symplectic capacity. We call it
pseudo symplectic capacity of Hofer-Zehnder type. 0(2) and 0(2 ) i
(2) have similar dynamical implications as the Hofer—Zehnder capacity cgz. In
fact, as in [HZ2, HV2| one shows that

0 < CiFy(M,w;00,000) < +00 (0 < CH3(M,w; 00, ) < +00)

implies that every stable hypersurface S C M separating ap and a., carries a
(contractible in M) closed characteristic, i.e., there is an embedded (contractible

in M) circle in S all of whose tangent lines belong to the characteristic line
bundle

Ls={(z,€) € TS |w(,n) =0 for all n € T, S}.
This leads to the following version of the Weinstein conjecture.

(ap, a0 )-Weinstein conjecture: Every hypersurface S of contact type in a
symplectic manifold (M, w) separating ag and a, carries a closed characteristic.

In terms of this language the main result Theorem 1.1 in [LiuT] asserts that the
(cp, o )-Weinstein conjecture holds if some GW-invariant

‘I/A,g,m+2 (Ca Qp, Aoo, P15 - - u@m)

does not vanish; see 1.3 below.



Vol. 156, 2006 SYMPLECTIC INVARIANTS 7

As before, let pt denote the generator of Ho(M;Q) represented by a point.
Then we have the true symplectic capacities

(3) {CHZ(M’(‘L)) = Cg)Z(Mvwapt’ptL

C% (M, w) = C2) (M, w; pt, pt).

Recall that we have also the m;-sensitive Hofer-Zehnder capacity denoted Crz
in [Lul] and c%, in [Schw]. By definitions, it is obvious that Cyz(M,w) <
cuz(M,w) and Cyz(M,w) < ¢ ,(M,w) for any symplectic manifold (M,w).
One naturally asks when Cyz (resp. C% ;) is equal to cyz (resp. ¢%5). The
following result partially answers this question.

LEMMA 1.4: Let a symplectic manifold (M,w) satisfy one of the following
conditions:
(i) (M,w) is closed.
(ii) For each compact subset K C M\ OM there exists a compact submanifold
W C M with connected boundary and of codimension zero such that
K CcW. Then

Cuz(M,w) =cpz(M,w) and Cgz(M,w)=c3,z(M,w).
For arbitrary homology classes o, ¢oo € Hi(M),

CS)Z(M,W;QQ,O(OO) < C;—??(M"'Wamaoo)a
(4) C'2 (M, w; a0, 000) < Crz(M,w),
ng)(M,w;ag,aoo) < Cyz(M,w).

Both Cg)z and C’g? are important because estimating or calculating them
is easier than for Cyz and Cf,,, and because they still share those proper-
ties needed for applications. In Remark 1.28 we will give an example which
illustrates that sometimes Cg)z gives better results than Cyz. Recall that the
Gromov width Wg is the smallest symplectic capacity so that
(5) We < Chz < Chz.

Convention: C stands for both C’g)z and Cg;) if there is no danger of
confusion.

The following theorem shows that Cg)z is indeed a pseudo symplectic capacity.

THEOREM 1.5:
(i) If M is closed then for any nonzero homology classes ag, oo € Hi(M;Q),

C(M,w;aq, 0) = C(M, w; oo, ).
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(ii) C(M,w;ap,00) Is invariant under those symplectomorphisms
¥ € Symp(M,w) which induce the identity on H,(M;Q).

(iii) (Normality) For any r > 0 and nonzero ag, 0w € H.(B?*(r);Q) or
H.(Z°™(r);Q),

C(B*™(r),wo; ag, 0o ) = C(Z2™(r), wo; gy Qoo ) = T2,
(iv) (Conformality) For any nonzero real number ),
C(M, \w; ap, @) = |A|C(M,w; ag, Qoo )-

(v) (Pseudo monotonicity) For any symplectic embedding v: (My,w;) —
(M3, ws) of codimension zero and any nonzero ag, oo € H.(M1;Q),

C,(q?)z(thl;ao,aoo) < C;?)z(mez;%(ao),iﬁ*(aoo))

Furthermore, if ¢ induces an injective homomorphism (M) — m1(Ms)
then

ng)(th'l;aOyaoo) < C’g%)(Mz,wz;llf*(ao)ﬂll*(aoo)).
(vi) For any m € N

C(M,w;ap, o) < C(M,w;mag, @eo),
C(M,w;ap, 0eo) < C(M,w; a0, mao),
C(Maw; —Qy, aoo) = C(M7w7 Qy, aOO) = C(Mawa g, —aoo)'
(vii) If dim ag + dim @y, < dim M — 2 and agp or as can be represented by a
connected closed submanifold, then

C(M,w;ap, 00) > 0.

Remark 1.6: If M is not closed, C(M,w;pt, a) and C(M,w; a, pt) might be dif-
ferent. For example, let M be the annulus in R? of area 2, and o be a generator
of Hi(M). Then Wg(M,w) = }f)Z(M,w;pt,a) = 2, while C}?)Z(M,w;a,pt) =
0 since Hoq(M,w;a,pt) = 0. This example also shows that the dimension
assumption dim agp + dim 0, < dim M — 2 cannot be weakened.

PROPOSITION 1.7: Let W C Int(M) be a smooth compact submanifold of
codimension zero and with connected boundary such that the homology
classes ag, 0o € Hy(M;Q) \ {0} have representatives supported in Int(W) and
Int(M) \ W, respectively. Denote by &y € H(W;Q) and o € Hi (M \ W;Q)
the nonzero homology classes determined by them. Then

(6) C, (W, w; o, pt) < OS2 (M, w; 0, 0oo),
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and we specially have
(7) cnz(W,w) = Cuz(W,w) < Cy (M, wipt, )

for any o € H,(M;Q)\ {0} with representative supported in Int(M)\W. If the
inclusion W — M induces an injective homomorphism 71(W) — w1(M) then

(8) CaP (W, w; d0,pt) < Cl19) (M, w; a0, 0eo),

and corresponding to (7) we have

9) Sz (W,w) = Cirz(W,w) < CE9 (M, w;pt, a).
Also
(10) CEY (M \ W,w; G, pt) < Cl} (M, w; oo, 0),
and
(11) C’g;)(M \ W, w; G0, pt) < Cg;)(M,w;aoo,ao)

if the inclusion M\ W — M induces an injective homomorphism ©{ (M \W) —
7 (M). Furthermore, for any a € H,(M;Q) \ {0} with dima < dimM -1,

(12) WG(M?‘U) < C(M,w;pt,a).

For closed symplectic manifolds, Proposition 1.7 can be strengthened as
follows.

THEOREM 1.8: If in the situation of Proposition 1.7 the symplectic manifold
(M,w) is closed and M \ W is connected, then

(13)  CGL(W,w;0,pt) + Cl (M \ W,w; oo, pt) < Clay (M, w; g, doo)-

In particular, if o € H,(M;Q) \ {0} has a representative supported in M \ W
and thus determines a homology class & € H,(M \ W;Q) \ {0}, then

crz(W,w) + CE) (M \ W,w; a,pt) < CEL(M,w;pt, ).

If both inclusions W — M and M\W — M induce an injective homomorphisms
7 (W) — m (M) and m (M \ W) — m1(M), then

(14) O3 (W,w;d0,pt) + CH3 (M \ W,w; Gioo, pt) < Ci23 (M, w; g, 0res),
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and specially
&z (Wyw) + Clig) (M \ W,w; & pt) < Ci) (M, w; pt, @)

for any a € H,(M;Q) \ {0} with a representative supported in M \ W.

An inequality similar to (13) was first proved for the usual Hofer—Zehnder
capacity by Mei-Yue Jiang [Ji]. In the following subsections we always take

G=Q.

1.3 ESTIMATING THE PSEUDO CAPACITY IN TERMS OF GROMOV-WITTEN
INVARIANTS. To state our main results we recall that for a given class
A € Hy(M;Z) the Gromov-Witten invariant of genus g and with m + 2 marked
points is a homomorphism

U 4,9,me2: H*(Hg,mﬂ;(@) X H*(M§Q)m+2 — Q.

We refer to the appendix and [FO, LiT, R, Sie| and [Lu8] for more details on
Gromov-Witten invariants.

The Gromov-Witten invariants for general (closed) symplectic manifolds were
constructed by different methods; cf. [FO, LiT, R, Sie|, and [LiuT] for a Morse
theoretic set-up. It is believed that these methods define the same symplec-
tic Gromov—Witten invariants, but no proof has been written down so far. A
detailed construction of the GW-invariants by the method in [LiuT], including
proofs of the composition law and reduction formula, was given in [Lu8] for a
larger class of symplectic manifolds including all closed symplectic manifolds.
The method by Liu-Tian was also used in [Mc2]. Without special statements,
the Gromov—Witten invariants in this paper are the ones constructed by the
method in [LiuT]. The author strongly believes that they agree with those con-
structed in [R].

Definition 1.9: Let (M,w) be a closed symplectic manifold and let ap, e €
H.(M;Q). We define

GW (M, w; ag, o) € (0, +00]

as the infimum of the w-areas w(A) of the homology classes A € Hy(M;Z) for
which the Gromov-Witten invariant U4 g m4+2(C; o, Qoo, B1, .-+, Bm) # 0 for

some homology classes (i, ..., 8m € Ho(M;Q) and C € H. (Mg m42;Q) and
an integer m > 1. We define

GW(M,w; ag, oo) 1= INf{GW o(M, w; g, a0 )| g > 0} € [0, +00].
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The positivity GW4(M,w; g, @tao) > 0 follows from the compactness of the
space of J-holomorphic stable maps (cf. [FO, LiT, R, Sie]). Here we have used
the convention inf() = +oo below (2). One easily checks that both GW, and
GW satisfy the pseudo monotonicity and conformality in Definition 1.1. As
Professor Dusa McDuff suggested, one can consider closed symplectic manifolds
only and replace the nontriviality condition in Definition 1.1 by

cB(CP™, 0p;pt, pt) = ¢ (CP' x T*™ 2, 51 & wo; pt, [pt x T?""2%)) = 7;

then both GWy and GW are pseudo symplectic capacities in view of (19) and
(23) below. The following result is the core of this paper. Its proof is given in
§3 based on [LiuT] and the key Lemma 3.3.

THEOREM 1.10: For any closed symplectic manifold (M,w) of dimension
dim M > 4 and homology classes o, aoo € Ho(M;Q) \ {0} we have

(15) Ciy (M, w; 00, @) < GW(M, w; 0, o)
and
(16) Cg?(M,w;ao,aoo) < GWo(M,w; ag, 0o ).

Remark 1.11: By the reduction formula (57) for Gromov-Witten invariants
recalled in the appendix,

\IIA,g,m+3([7rr—r‘Lh—3(K)];a0a Qoo a’lgl’ e 7ﬂm)
= PD(a)(A) : \I’A,g,m+2([K]; 0, Ology By - - - aﬁm)

for any @ € Hon—2(M,Z) and [K| € H.(Mgm+2,Q). Here 2n = dimM. It
easily follows that GW (M, w; ap, o) < 400 implies that GW (M, w; ap, @),
GW,(M,w; o, 000) and GW (M, w; o, §) are finite for any o, 8 € Hap—o(M,Z)
with PD(a)(A) # 0 and PD(B)(A) # 0. In particular, it is easily proved that
for any integer g > 0

(17)  GWy(M,w;pt, PD([w])) = inf{GW (M, w; pt,a)| @ € H.(M,Q)}.

COROLLARY 1.12: If GW (M, w; ag, @) < oo for some integer g > 0 then
the (ap, a )-Weinstein conjecture holds in (M, w).

Many results in this paper are based on the following special case of
Theorem 1.10.
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THEOREM 1.13: For any closed symplectic manifold (M,w) of dimension at
least four and a nonzero homology class a € H,.(M;Q),

Cg)Z(M,MPt, a) < GW(M, w; pt, o)

and
Cii7 (M, w; pt, @) < GWo(M, wipt, @),

Definition 1.14: Given a nonnegative integer g, a closed symplectic manifold
(M,w) is called g-symplectic uniruled if ¥4 g m42(C;pt, @, B1,...,0m) # 0
for some homology classes A € Hy(M;Z), o, b1,...,0m € H.(M;Q) and
C e H*(Hg,mw;@) and an integer m > 1. If C can be chosen as a point
pt we say (M,w) is strong g-symplectic uniruled. Moreover, (M, w) is called
symplectic uniruled (resp. strong symplectic uniruled) if it is g-symplectic
uniruled (resp. strong g-symplectic uniruled) for some integer g > 0.

It was proved in ([Ko]) and ([R]) that (projective algebraic) uniruled mani-
folds are strong 0-symplectic uniruled.* In Proposition 7.3 we shall prove
that for a closed symplectic manifold (M,w), if there exist homology classes
A€ Hy(M;Z) and o; € H,(M;Q), i =1,...,k, such that the Gromov-Witten
invariant W4 g x41(pt;pt, 01,...,0x) # 0 for some integer g > 0, then there
exists a homology class B € Ho(M;Z) with w(B) < w(A) and §; € H.(M;Q),
i = 1,2, such that the Gromov-Witten invariant ¥go3(pt;pt,B1,02) # 0.
Therefore, every strong symplectic uniruled manifold is strong 0-symplectic
uniruled. Actually, we shall prove in Proposition 7.5 that the product of any
closed symplectic manifold and a strong symplectic uniruled manifold is strong
symplectic uniruled. Moreover, the class of g-symplectic uniruled manifolds
is closed under deformations of symplectic forms because Gromov-Witten in-
variants are symplectic deformation invariants. For a g-symplectic uniruled
manifold (M,w), i.e., GWy(M,w;pt, PD([w])) < +o0, the author observed in
[Lu3] that if a hypersurface of contact type S in (M,w) separates M into two
parts M, and M_, then there exist two classes PD([w])+ and PD([w])- in
Hy,—o(M,R) with cycle representatives supported in M, and M_ respectively
such that PD([w])+ +PD([w])- = PD(|w]) and that at least one of the numbers
GW (M, w;pt, PD([w])+) or GW¢(M, w; pt, PD([w])-) is finite. Theorem 1.13

* This is the only place in which we assume that our GW-invariants agree with
the ones in [R]. In a future paper we shall use the method in [LiuT] and the
techniques in [Lu8] to prove this fact.
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(or (15)) implies that at least one of the following two statements holds:

C2) (M, w;pt, PD([w])+) < GW(M,w;pt, PD([w])4) < +00 or

(18) @)
Chz(M,w;pt, PD([w])-) £ GW¢(M,w; pt, PD([w])-) < +oo0.

On the other hand, (12) shows that CS)Z(M,w;pt,PD([w])+) and
Cgé(M ,w; pt, PD([w])-) are always positive. —Consequently, S carries a
nontrivial closed characteristic, i.e., the (pt, pt)-Weinstein conjecture holds in
symplectic uniruled manifolds ([Lu3]).

The Grassmannians and their products with any closed symplectic manifold
are symplectic uniruled. For them we have

THEOREM 1.15: For the Grassmannian G(k,n) of k-planes in C" we denote
by o™ the canonical symplectic form for which ™) (L* ™)) = n for the
generator L*™) of Hy(G(k,n);Z). Let the submanifolds X*™ ~ G(k,n — 1)
and Y™ of G(k,n) be given by {V € G(k,n) | wiv = Oforallv € V}
and {V € G(k,n) | vo € V} for some fixed vo,wg € C" \ {0} respectively.
Their homology classes [X*™)] and [Y (*™)] are independent of the choices of
vo, wo € C™\{0} and deg[X *™)] = 2k(n—k—1) and deg[Y *™)] = 2(k—1)(n—k).
Then
Wa(G(k,n),a®m) = C7L(G(k,n), 0" ™; pt, 0) = 7

for o = [X*™] or a = [Y*™)] with k <n - 2.

In particular, if k = 1 and n > 3 then [Y(™] = pt and (G(1,n),c(1™) =
(CP"_I, On—1), where o,_1 the unique U(n)-invariant Kéhler form on cprt
whose integral over the line CP! ¢ CP" ! is equal to w. In this case
Theorem 1.15 and Lemma 1.4 yield

cuz(CP* ', 0n_1) = Cyz(CP" !, 0y 1)

(19)
= C8L(CP" ! opyipt,pt) = 7.

Hofer and Viterbo [HV2] first proved that cyz(CP",0,) = m. Therefore,
Theorem 1.15 can be viewed as a generalization of their result. If £ = 1, on
one hand the volume estimate gives Wg(CP™ !, 0,_1) < 7, and on the other
hand there exists an explicit symplectic embedding B**~2(1) — (CP""},0,,_1);
see [Ka, HV2]. So we have Wg(CP" },6,_1) = 7. For k > 2, however, the
remarks below Theorem 1.35 show that the identity Wg(G(k,n),c®™) = x
does not follow so easily. Karshon and Tolman [KaTol] independently com-
puted We(G(k,n),c®™) in a different method.
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THEOREM 1.16: ‘For any closed symplectic manifold (M,w),
(20) C(M x Glk,n),w ® (ac®™™); pt, [M] x 0) < lafr

for any a € R\ {0} and a = [X®™)] or o = [Y*™)] with k < n — 2. Moreover,
for the product

(W,Q) = (G(k1,m1) X -+ X Gkr,nr), (a10*0™) @ - - @ (a,0*m0)))
we have
(21) C(W,Q;pt,ar x -+ x ar) < (lar]| + -+ |ar])7
for any a; € R\ {0} and oy = [X*:%)] or [Y (k7). Furthermore,
(22)  We(Gki,ny) X -+ x Glky,ny), 080™) @ ... @ glbrmr)y = 1

For the projective space CP™ = G(1,n+ 1) we have

THEOREM 1.17: Let (M,w) be a closed symplectic manifold and o, the unique
U(n+1)-invariant Kéhler form on CP™ whose integral over the line CP* ¢ CP™
is equal to w. Then

(23) C(M x CP™,w & (aoy); pt, [M x pt]) = |alm

for any a € R\ {0}. Moreover, for any r > 0 and the standard ball B*(r) of
radius r and the cylinder Z**(r) = B%(r) x R*"~2 in (R?",wy), we have

(24) C(M x B> (r),w ® wp) = C(M x Z°™(r),w @ wg) = 7r?
for C = Cuz, Cyz, cuz and cgy 5.

Remark 1.18: Combining the arguments in [McSl, Lul] one can prove a weaker
version of (24) for any weakly monotone noncompact geometrically bounded
symplectic manifold (M,w) and any r > 0, namely

C37(M x B¥(r),w ® wy) < Cyz(M x Z2(r),w & wp) < 77,

This generalization can be used to find periodic orbits of a charge subject to a
magnetic field (cf. {Lu2]).

From Theorem 1.13 and Lemma 1.4 we obtain
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COROLLARY 1.19: For any closed symplectic manifold (M,w) of dimension at
least 4 we have

caz(M,w) < GW(M,w;pt,pt), ciz(M,w) < GWo(M,w;pt,pt).
Thus cgz(M,w) is finite if the Gromov-Witten invariant

lIJA,g,m-i—Q(C’;pt7pt> 1813 s 7:8’0’1)

does not vanish for some homology classes A€ Hy(M;Z), By, ..., Bm € Ho(M;Q)
and C € H.(Mym+2;Q) and integers ¢ > 0 and m > 0. Notice that
GWo(M,w;pt,pt) is needed here. For example, consider

(M,w) = (CP* x CP', 01 ® 0y).

The following Theorem 1.21 and its proof show that cyz(M,w) = ¢ ,(M,w) =
27 and GWo(M,w; pt, pt) = 2r. However, one easily proves that

GWo(M,w;pt, PD([w])) = GWo (M, w; pt, [pt x CP*])

= GWo(M,w;pt, [CP! x pt]) = 7.

So GWy (M, w; pt, pt) is necessary.
Example 1.20: (i) For a smooth complete intersection (X,w) of degree
(dy,...,d) in CP™** with n = 25(d; — 1) — 1 or 3% (d; — 1) — 3, we have
2(X,w) = O35(X,w) < 40,

(ii) For a rational algebraic manifold (X,w), if there exists a surjective
morphism 7: X — CP" such that 7|x\s is one-to-one for some subvariety
S of X with codime 7(S) > 2, then ¢, (X,w) = Cyz(X,w) is finite.

(i) follows from the corollaries of Propositions 3 and 4 in [Be] and (ii) comes

from Theorem 1.5 in [LiuT]. We conjecture that the conclusion also holds for
the rationally connected manifolds introduced in [KoMiMo].

In some cases we can get better results.

THEOREM 1.21: For the standard symplectic form o,, on CP™ as in
Theorem 1.17 and any a; € R\ {0}, i=1,...,k, we have

C(CP™ x --- x CP™ 100, @+ ® ayon,) = (la1] + -+ |a|)7

for C = cyz and cy 5.

According to Example 12.5 of [McSal]

Wg(CP! x --- x CP!,ay01 ® - - - ® ayoy) = min{|ay), ..., |ax|}7
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for any a; € R\ {0}, ¢ =1,...,k. This, Theorem 1.21 and (5) show that Cyz,
Chz, caz and cyy , are different from the Gromov width Wg.

1.4 THE WEINSTEIN CONJECTURE AND PERIODIC ORBITS NEAR SYMPLECTIC
SUBMANIFOLDS.

1.4.1. The Weinstein conjecture in cotangent bundles of uniruled manifolds.
By “The Weinstein conjecture” we in the sequel mean the (pt,pt)-Weinstein
conjecture, i.e.: Every separating hypersurface S of contact type in a symplectic
manifold carries a closed characteristic. While in some of the previous works
on the Weinstein conjecture, e.g. [HV1], the assumption that S is separating
was also imposed, Weinstein’s original conjecture, [We2], does not assume that
S is separating. So far this conjecture has been proved for many symplectic
manifolds; cf. [C, FHV, FrSchl, H2, HV1, HV2, LiuT, Lul, Lu2, Lu3, V1,
V4, V5| and the recent nice survey [Gi] for more references. In particular, for
the Weinstein conjecture in cotangent bundles Hofer and Viterbo [HV1] proved
that if a connected hypersurface S of contact type in the cotangent bundle of a
closed manifold N of dimension at least 2 is such that the bounded component of
T*N\ S contains the zero section of 7* N, then it carries a closed characteristic.
In [V5] it was proved that the Weinstein conjecture holds in cotangent bundles
of simply connected closed manifolds. We shall prove

THEOREM 1.22: Let (M,w) be a closed connected symplectic manifold of
dimension at least 4 and let L C M be a Lagrangian submanifold. Given a
homology class &y € H,.(L;Q) \ {0} we denote by ay € H.(M;Q) the class
induced by the inclusion L « M. Assume that the Gromov-Witten invari-
ant ¥4 4me1(C;00,01,...,0m) does not vanish for some homology classes

A € Hy(M;Z), aq,...,am € Hi(M;Q) and C € H,(Mgm+1;Q) and inte-
gers m > 1 and g > 0. Then for every ¢ > Q, C;f)z(Uc,wcan;&o,pt) < 400,

and
Cg;)(Uc’wcan;do,pt) < 400

if g = 0 and the inclusion L — M induces an injective homomorphism my (L) —
7 (M). Here U, = {(q,v*) € T*L| (v*,v*) < c?} is with respect to a
Riemannian metric (-,-) on T*L. Consequently, every hypersurface of contact
type in (T*L,wcan) separating éo and pt carries a closed characteristic and a
contractible one in the latter case. In particular, if (M,w) is a g-symplectic
uniruled manifold then for each ¢ > 0

CHZ(UC,Wcan) = CHZ(Uc,wcan) < 400
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and
(25) C%Z(Ucawcan) = C;)Iz(Umwcan) < +0o0

if g = 0 and the inclusion L — M induces an injective homomorphism (L) —
m(M). If (M,w) itself is strong symplectic uniruled then (25) also holds for
L=MC (T*"M,wcan)-

Using a recent refinement by Macarini and Schlenk [MaSchl] of the arguments
in [HZ2, Sections 4.1 and 4.2] we immediately derive: if L is a Lagrangian sub-
manifold in a g-symplectic uniruled manifold and S C (T*L,wcan) a smooth
compact connected orientable hypersurface without boundary, then for any
thickening of S,

P: Ix S —>UC (T"L,wean),
Wt 11P(S) £ 0} = () and uft € I P°(S,) 0} = (D)

if g = 0 and the inclusion L — M induces an injective homomorphism m; (L) —
m1(M). Here p denotes Lebesgue measure, I is an open neighborhood of 0 in R,
and P(S;) (resp. P°(S:)) denotes the set of all (resp. contractible in U) closed
characteristics on S; = ¥(S x {t}).

COROLLARY 1.23: The Weinstein conjecture holds in the following manifolds:
(i) symplectic uniruled manifolds of dimension at least 4;
(ii) the cotangent bundle (T*L,wcan) of a closed Lagrangian submanifold L
in a g-symplectic uniruled manifold of dimension at least 4;
(iii) the product of a closed symplectic manifold and a strong symplectic
uniruled manifold;
(iv) the cotangent bundles of strong symplectic uniruled manifolds.

The result in (i) is actually not new. As observed in [Lu3] the Weinstein
conjecture in symplectic uniruled manifolds can be derived from Theorem 1.1 in
[LiuT]. With the present arguments it may be derived from (18) and
Corollary 1.12. (ii) is a direct consequence of Theorem 1.22. (iii) can be de-
rived from (i) and Proposition 7.5. By (ii) and Proposition 7.5 the standard
arguments give rise to (iv).

1.4.2. Periodic orbits near symplectic submanifolds. The existence of periodic
orbits of autonomous Hamiltonian systems near a closed symplectic submanifold
has been studied by several authors; see [CiGiKe, GiGu, Ke| and the references
there for details. Using Proposition 1.7 and suitably modifying with the argu-
ments in [Lu6] and [Bil] we get
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THEOREM 1.24: Let (M,w) be any symplectic manifold and let N C M be a
connected closed symplectic submanifold of codimension 2. Then for any € > 0
there exists a smooth compact submanifold W C M with connected boundary
and of codimension zero which is a neighborhood of N in M such that

cpz(Ww) = Cpz(W,w) <e.

Consequently, for any smooth compact connected orientable hypersurface
S ¢ W\ OW without boundary and any thickening ¢: Sx I — U C W it
holds that

p({t € I| P°(Se) # 0}) = u(I).
Here u, I, Sy and P°(S;) are as above Corollary 1.23.

The first conclusion will be proved in §5, and the second follows from the first
one and the refinement of the Hofer-Zehnder theorem by Macarini and Schlenk
[MaSchl] mentioned above. The second conclusion in Theorem 1.24 implies: For
any smooth proper function H: W — R the levels H = € carry contractible in
U periodic orbits for almost all € > 0 for which {H = ¢} C Int(W). Using
Floer homology and symplectic homology, results similar to Theorem 1.24 were
obtained in [CiGiKe, GiGu] for any closed symplectic submanifolds of positive
codimension in geometrically bounded, symplectically aspherical manifolds. Re-
call that a symplectic manifold (M, w) is said to be symplectically aspherical if
Wry(mry = 0 and ¢ (TM)| a1y = 0. It seems possible that our method can be
generalized to any closed symplectic submanifold of codimension more than 2.

1.5 NONSQUEEZING THEOREMS. We first give a general nonsqueezing theorem
and then discuss some corollaries and relations to the various previously found
nonsqueezing theorems.
Definition 1.25:  For a symplectic manifold (M, w) we define I'(M, w) € [0, +00]
by

T(M,w) = inf CZ) (M, w; pt, ),

«

where o € H,(M;Q) runs over all nonzero homology classes of degree dega <
dim M — 1.

By (12), for any connected symplectic manifold (M,w) we have
(26) We(M,w) <T(M,w).

However, it is difficult to determine or estimate I'(M,w). In some cases one can
replace it by another number.
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Definition 1.26: For a closed connected symplectic manifold (M,w) of
dimension at least 4 we define GW(M,w) € (0,+00] by

GW(M,w) = inf GW4(M, w; pt, a),
where the infimum is taken over all nonnegative integers g and all homology
classes o € H,.(M;Q) \ {0} of degree dega < dim M — 1.

By (17) we have GW(M,w) = inf, GW4(M,w;pt, PD([w])). Note that
GW(M,w) is finite if and only if (M,w) is a symplectic uniruled manifold.
From Theorem 1.13 and (26) we get

THEOREM 1.27: For any symplectic uniruled manifold (M,w) of dimension at
least 4 we have

We(M,w) < GW(M, w).

Actually, for a uniruled manifold (M,w), i.e., a Kéhler manifold covered by
rational curves, the arguments in [Ko, R] show that GW(M,w) < w(A), where
A = [C] is the class of a rational curve C through a generic o € M and such
that [, w is minimal.

Remark 1.28: Denote by (W, Q) the product
(CP™ x--- x CP™, 0100, ® - ® aron,)

in Theorem 1.21. It follows from Theorem 1.13 and the proof of Theorem 1.17
that
GW(W, Q) < min{|ai],...,|ar|}7.

By (26) and definition of ['(W, ), for any small ¢ > 0 there exists a class
ae € H (W, Q) of degree deg(a.) < dim W — 1 such that

Wa (W, ) < Cg)Z(W,Q;pt,ae) < min{jai}, ..., lak|}m + €.
But Theorem 1.21 shows that
cuz(W, ) = Cuz(W, Q) = (la1| + - - + |ax|)7.
Therefore, if £ > 1 and € > 0 is small enough then
We(W,Q) < CEL(W, 2 pt,a0) < Cz(W,9).

This shows that our pseudo symplectic capacity Cg)Z(W, Q; pt,a.) can give a
better upper bound for W (W, 1) than the symplectic capacities cgz(W, )
and Cuz (W, Q).
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Recall that Gromov’s famous nonsqueezing theorem states that if there exists
a symplectic embedding B®*(r) < Z?"(R), then r < R. Gromov proved it by
using J-holomorphic curves, [Gr]. Later on, proofs were given by Hofer and
Zehnder based on the calculus of variation and by Viterbo using generating
functions, [V3]. As a direct consequence of Theorem 1.5 and (24) we get

COROLLARY 1.29: For any closed symplectic manifold (M,w) of dimension 2m,
if there exists a symplectic embedding

B2 (r) — (M x Z*"(R),w @ wo),
then r < R.

Actually, Lalonde and McDuff proved Corollary 1.29 for any symplectic man-
ifold (M,w) in [LaMcl]. Moreover, one can derive from it the foundational
energy-capacity inequality in Hofer geometry (cf. [LaMcl, La2] and [McSal, Ex.
12.21]). From (24) one can also derive the following version of the nonsqueezing
theorem which was listed below Corollary 5.8 of [LaMc2,II] and which can be
used to prove that the group of Hamiltonian diffeomorphisms of some compact
symplectic manifolds have infinite diameter with respect to Hofer’s metric.

COROLLARY 1.30: Let (M,w) and (N,o) be closed symplectic manifolds of
dimensions 2m and 2n respectively. If there exists a symplectic embedding

M x B2"*2(r) & (M x N x B?(R),w @0 @ w)
or a symplectic embedding
M x B2(r) 5 (M x R?™ x B?(R),w & wi™ & wl?),

then r < R. Here w{™ denotes the standard symplectic structure on R2™.

The second statement can be reduced to the first one. From Theorem 1.16
we get

COROLLARY 1.31: For any closed symplectic manifold (M, w) of dimension 2m,
We(M x G(k,n),w ® (ac®™)) < [a]r.

The study of Hofer geometry requires various nonsqueezing theorems. Let us
recall the notion of quasicylinder introduced by Lalonde and McDuff in [LaMc2].



Vol. 156, 2006 SYMPLECTIC INVARIANTS 21

Definition 1.32: For a closed symplectic manifold (M,w) and a set D diffeo-
morphic to a closed disk in (R%,wp = ds A dt), the manifold Q@ = (M x D, Q)
endowed with the symplectic form {2 is called a quasicylinder if

(i) Q restricts to w on each fibre M x {pt};

(i) € is the product w X wp near the boundary 0Q = M x 9D.
If @ = wxwp on Q, the quasicylinder is called split. The area of a quasicylinder
(M x D,Q) is defined as the number A = A(M x D, Q) such that

Vol(M x D,Q) = A - Vol(M, w).

As proved in Lemma 2.4 of [LaMc2|, the area A(M x D, Q) is equal to f{z} «p 5
for any z € M.

Following [McSl] we replace @ in Definition 1.32 by the obvious
S2-compactification (M x §2,Q). Here  restricts to w on each fibre. It is
clear that Q(A) = A(Q, Q) for A = [pt x §?] € Hy(M x 52). But it is proved in
Lemma 2.7 of [LaMc2] that ©Q can be symplectically deformed to a product
symplectic form w @ o. Therefore, it follows from the deformation invariance of
Gromov-Witten invariants that

U 4,0,3(pt; pt, [M x pt], [M x pt]) # 0.
By Theorem 1.13 we get
C(M x 82,9 pt, [M x pt]) < Q(A) = A(Q, Q).

As in the proof of Theorem 1.17 we can derive from this

THEOREM 1.33 (Area-capacity inequality): For any quasicylinder (Q, Q)

chz(@, ) = Cpz(Q, Q) <AQ, Q).

Area-capacity inequalities for Wg, cyz and ¢%, have been studied in [FHV,
HV2, LaMcl, Lul, McS]]. As in {LaMc2, McSl] we can use Theorem 1.33 and
Lemma 1.4 to deduce the main result in [McS]]: For an autonomous Hamiltonian
H: M — R on a closed symplectic manifold (M,w) of dimension at least 4, if
its flow has no nonconstant contractible fast periodic solution then the path
¢fle[0’1] in Ham(M,w) is length-minimizing among all paths homotopic with
fixed endpoints.

From Theorem 1.33 and (5) we obtain the following nonsqueezing theorem
for quasi-cylinders.
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COROLLARY 1.34: For any quasicylinder (M x D, ) of dimension 2m + 2,
We(M x D,Q) < A(M x D,Q).

Our results also lead to the nonsqueezing theorem Proposition 3.27 in [Mc2]
for Hamiltonian fibrations P — S2.

1.6 SYMPLECTIC PACKINGS AND SESHADRI CONSTANTS.

1.6.1. Symplectic packings. Suppose that B?*(r) = {z € R?™| |z| < r} is en-
dowed with the standard symplectic structure wg of R??. For an integer k > 0,
a symplectic k-packing of a 2n-dimensional symplectic manifold (M,w) via
B?™(r) is a set of symplectic embeddings {p;}5_; of (B**(r),wp) into (M,w)
such that Imp; NImy; = @ for ¢ # j. If Vol(M,w) is finite and Int(M) C
UTm g;, then (M, w) is said to have a full symplectic k-packing. Symplectic
packing problems were studied for the first time by Gromov in [Gr] and later
by McDuff and Polterovich [McPo], Karshon [Ka], Traynor [Tr], Xu [Xu],
Biran [Bil, Bi2| and Kruglikov [Kru]. As before, let o,, denote the unique
U(n + 1)-invariant Kahler form on CP™ whose integral over CP' is equal to
7. For every positive integer p, a full symplectic p"-packing of (CP",0,) was
explicitly constructed by McDuff and Polterovich [McPo| and Traynor [Tr]. A
direct geometric construction of a full symplectic (n + 1)-packing of (CP",0,,)
was given by Yael Karshon, [Ka]. By generalizing the arguments in [Ka] we
shall obtain

THEOREM 1.35: Let the Grassmannian (G(k,n),c*™)) be as in Theorem 1.15.
Then for every integer 1 < k < n there exists a symplectic [n/k]-packing of
(G(k,n),c®m™) by B¥(™=k)(1). Here [n/k] denotes the largest integer less
than or equal to n/k.

This result shows that the Fefferman invariant of (G(k,n),c®*™) is at least
[n/k]. Recall that the Fefferman invariant F(M,w) of a 2n-dimensional sym-
plectic manifold (M, w) is defined as the largest integer k for which there exists
a symplectic packing by k open unit balls. Moreover, at the end of §6 we shall
prove

(k—l)!---2!-1!-(n—k—l)!-“2!'1!.Fk(n—k)‘

(27) Vol(G(k,n),c®m™) = (n—1)l---21 1

Note that Vol(B2*(*~*)(1),wq) = 7=} /(k(n — k))!. One easily sees that the
symplectic packing in Theorem 1.35 is not full in general. On the other hand,
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a full packing of each of the Grassmannians Gr*(2,R%) and Gr*(2,R) by two
equal symplectic balls was constructed in [KaTo2].

1.6.2. Seshadri constants. Our previous results can also be used to estimate
Seshadri constants, which are interesting invariants in algebraic geometry.
Recall that for a compact complex manifold (M, J) of complex dimension n
and an ample line bundle L — M, the Seshadri constant of L at a point
z € M is defined as the nonnegative real number

— i Joa(L)
(28) e(Lz) = (lzgg mult, C’

where the infimum is taken over all irreducible holomorphic curves C' passing
through the point z, and mult, C is the multiplicity of C at z ([De]). The global
Seshadri constant is defined by

e(L) = x’é’z{; e(L,z).

Seshadri’s criterion for ampleness says that L is ample if and only if ¢(L) > 0.
The cohomology class ¢;(L) can be represented by a J-compatible Kéhler form
wr, (the curvature form for a suitable metric connection on L). Denote L" =
S Wt =n!Vol(M,wr). Then (L, x) has the elementary upper bound

(29) e(L,z) < VL.
Biran and Cieliebak [BiCi, Prop. 6.2.1] gave a better upper bound, i.e.,
e(L) € We(M,wr).

However, it is difficult to estimate W (M, wr). Together with Theorem 1.27 we
get

THEOREM 1.36: For a closed connected complex manifold of complex dimension
at least 2,
e(L) < GW(M,wr).

Remark 1.37: By Definition 26, if GW(M,wy,) is finite then (M,wy) is sym-
plectic uniruled. So Theorem 1.36 has only actual sense for uniruled (M, J).
In this case our upper bound GW(M,wy,) is better than ¥/ L™ in (29). As an
example, let us consider the hyperplane [H] in CP". It is ample, and the Fubini-
Study form wgg with fc p1 wrs = 1 is a Kahler representative of ¢, ([H]). Let p;
and pg denote the projections of the product CP™ x CP™ to the first and second
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factors. For an integer m > 1 the line bundle p;[H]+ps(m[H]) — CP" xCP" is
ample and ¢; (p}[H] + p3(m[H])) has a Kéhler form representative wgs & mwgs.
From the proof of Theorem 1.16 it easily follows that

GW(CP” x CP",wrs ® mwps) <1

(In fact, equality holds.) But a direct computation gives

1
[
(WFS®WWFS)2"> 2/m- " %_z'%)'— > 1.

Yiwite+ itz = [

From the above arguments and the subsequent proofs the reader can see that
some of our results are probably not optimal. In fact, it is very possible that
using our methods one can obtain better results in some cases ([Lu7] and [Lu9]).
We content ourselves with illustrating the new ideas and methods.

P xCP™

The paper is organized as follows. In Section 2 we give the proofs of
Lemma, 1.4, Theorems 1.5, 1.8 and Proposition 1.7. The proof of Theorem 1.10
is given in Section 3. In Section 4 we prove Theorems 1.15, 1.16, 1.17 and 1.21.
In Section 5 we prove Theorems 1.22 and 1.24. Theorem 1.35 is proved in Sec-
tion 6. In the Appendix we discuss some related results on the Gromov-Witten
invariants of product manifolds.
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2. Proofs of Lemma 1.4, Theorems 1.5 and 1.8 and Proposition 1.7

We first give two lemmas. They are key to our proofs in this section and the
next one. According to Lemma 4.4 on page 107 and Exercise 9 on page 108 of
[Hi] we have

LEMMA 2.1: If N is a connected smooth manifold and W C Int(N) a compact
smooth submanifold with connected boundary and of codimension zero, then
OW separates N in the sense that Int(N) \ OW has exactly two connected
components and the topological boundary of each component is OW. In this
case OW has a neighborhood in N which is a product OW x (—2,2) with OW
corresponding to OW x {0}. If W is only contained in N then OW has a
neighborhood in W which is a product OW x (—2,0].

From Lemma 12.27 in [McSal] we easily derive

LEMMA 2.2: Given a Riemannian metric g on M, there exists p = p(g, M) > 0
such that for every smooth function H on M with

sup vang(m)”g <p
reM

the Hamiltonian equation & = Xy (x) has no nonconstant fast periodic solutions.
In particular, the conclusion holds if |H||c2 < p. Here Vg is the Levi-Civita
connection of g and norms are taken with respect to g.

From Darboux’s theorem we obtain

LEMMA 2.3: Let (M,w) be a 2n-dimensional symplectic manifold, and B*"(r)
= {2 € R?" : |z| < r} with r > 0. Then for any z € Int(M) and any small
¢ > 0 there exist r > 0, a symplectic embedding ¢: (B?"(2r),wp) — (M,w)
with p(0) = zo and a smooth function Hf : M — R such that:

(i) HE, =0 outside Int(p(B**(2r)), and HY, = € on @(B*(r)).

(if) Hy, is constant h(s) along ¢({|z| = s}) for any s € [0,2r], where h: [0, 2r]
— [0,¢€] is a nonnegative smooth function which is strictly decreasing on
[r,2r]. Consequently, Hf (0(z)) > Hf (p(2')) if r < |2 < |2/| < 2r, and
HY, has no critical values in (0, ¢).

(ili) £ = Xpe, () has no nonconstant fast periodic solutions.

Proof of Lemma 1.4: Case (i). We only need to prove that

Crz(M,w;pt,pt) > caz(M,w).
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To this end it suffices to construct for any H € Hyq(M,w) an
Fe Had(Mvw;ptapt)

such that max F > max H. By the definition there exist a nonempty open
subset U and a compact subset K C M \ OM such that: (a) H|y = 0 and
H|ynx =max H, (b) 0 < H <max H, (c) £ = Xy(z) has no nonconstant fast
periodic solutions. These imply that U C Int(K). By the illustrations below
the definition of cgz in §1.2 we may assume that M \ K # @. Then both U and
M \ K are nonempty open sets because M is a closed manifold. For a given
small € > 0 we may take symplectic embeddings ¢ and 9 from (B"(2r),wp) to
(M, w) such that

©(B*(2r)) cU and #(B™(2r))c M\ K.

Let H¢, and HY, be the corresponding functions as in Lemma 2.3. Since H?,
(resp. HY,) is equal to zero outside ¢(B?*(2r)) (resp. ¢(B**(2r))) we can define
a smooth function H: M — R by

_ max H + HY (z) ifze M\K,
H(z) =< H(x) ifze K\U,
~HY (z) ifzxel.

Define F = H + . Then maxF = maxH + 2 > max H, min ¥ = 0 and
£ = Xp(z) has no nonconstant fast periodic orbits in M.

Since M is a closed manifold, M \ Int(4(B?*(r))) is a compact submanifold
with boundary ¥(8B2?"(r)). It follows that F € Heq(M,w;pt, pt) with P(F) =
©(B?*(r)) and Q(F) = M \ Int(x»(B?*(r))). The desired result follows.

Going through the above proof we see that if H € HJ;(M,w), ie,
z = Xpg(z) has no nonconstant contractible fast periodic solutions, then
F € H2,(M,w;pt,pt). This implies that C} (M, w) = ¢z (M,w).

Case (ii). The arguments are similar. We only indicate different points. Let
H € Hoq(M,w). For a compact subset K(H) C M\ M we find by assumption
3 compact submanifold W with connected boundary and of codimension zero
such that K(H) C W. Since K(H) is compact and disjoint from OM we can
assume that K(H) is also disjoint from 0W. By Lemma 2.1 we can choose
embeddings

®: [-5,0] x OW — M

such that ({0} x W) = OW and

®([-5,0] x W) C W and K(H)N&([-5,0] x aW) = 0.
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For each t € [~5,0] the set
Wy = W\ @((¢,0] x OW)

is a compact submanifold of M which is diffeomorphic to W. By shrinking £ > 0
in Case (i) if necessary, one easily constructs a smooth function H.: M — R
such that
(a) He =0 in Int(W_4) and H, = ¢ outside W_y;
(b) 0 < H, < ¢ and each ¢ € (0,¢) is a regular value of H;
(¢) Hg is constant f(s) along ®({s} x 0W) for any s € [-5, 0], where f: [-5,0]
— [0,¢] is a nonnegative smooth function which is strictly increasing in
[~47 —1];
(d) ¢ = Xp,_(x) has no nonconstant fast periodic solutions.
Let H?, be as in Case (i). We can define a smooth function H:M > Rby
_ {maxH+HE(m) ifre M\ K,
H(z) =< H(x) ifre K\U,
~HY (z) ifzeU,
and set F = H +e. Then maxF > maxH, minF = 0 and ¢ = Xp(z)
has no nonconstant fast periodic solutions. As in Case (i) one checks that
F € Hoa(M,w;pt,pt) with P(F) = ¢(B?(r)) and Q(F) = M \ Int(W_,). So
we have max H < maxF < Cyz(M,w) for any H € Haq(M,w), and thus
caz(M,w) € Cuz(M,w). As above we get that Crrz(M,w) = cgz(M,w) and
Chz(M,w) = cgz(M,w). 1

Proof of Theorem 1.5: (i) We take H € Hqq(M,w;0q,000). Let P = P(H)
and @ = Q(H) be the corresponding submanifolds in Definition 1.2, and ay,
Qoo the chain representatives. Define G = —H + maxH. Then 0 < G <
max G = max H, G|p = maxG, G|amt(@) = 0 and Xg = —Xp. Therefore,
G € Hog(M,w; 00, 0g), and (i) follows.

(i) is a special case of (v), and (iv) and (vi) are clear.

For (iii), note that B2?"(1) and Z2"(1) are contractible. One can slightly
modify the proofs of Lemma 3 and Theorem 2 in Chapter 3 of [HZ2] to show
that Cg;(B2"(1),w0;ao,aw) > w and ng)(ZQ"(l),wo;ao,aoo) < w. Then
(iii) follows from (v) and definitions:

7 < CEL(B™ (1), wo; a0, oo
< C’g%) (32"(1),w0; g, U )
< O (2%"(1), w03 20, 0c0)
<.
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For (v) we only prove the first claim. The second claim then follows together
with the argument in [Lul]. For H € H,4(M;,w1; ap, o) let the submanifolds
P; and @, of (M7,w;) be as in Definition 1.2. Set P, = ¢(P;) and @2 = ¥(Q1),
and define 9, (H) € C*(M3,R) by

Hoy Yz) ifze M),
Y. (H)(e) = {maxﬁ[ ) if z ¢ fﬁEMli.
It is clear that 9. (H) € Haa(Ma,wa; ¥u{a), Y« (), and so (v) follows.

To prove (vii) we only need to show that Huq(M,w; ag, d) iS nonempty
under the assumptions there. Without loss of generality let o be represented
by a compact connected submanifold S C Int M without boundary. Since
dimap + dimas < dimM — 1 it follows from intersection theory that there
is a cycle representative G, Of ain such that SN de = §.

Choose a Riemannian metric g on M. For € > 0 let NV, be the closed e-ball
bundle in the normal bundle along S, and let exp: N — M be the exponential
map. For € > 0 small enough, P = S, = exp(N;) and @ = Sz = exp(N2) are
smooth compact submanifolds of M of codimension zero, and Sa. is still disjoint
from Go. Since dimS = dimay < dim M — 2, both P and ) have connected
boundary.

Take a smooth function f: R — R such that f(t) =0 for t < &2, f(t) =1 for
t > 4e? and f'(t) > 0 for €2 < t < 4¢%. We define a smooth function F: M — R
by F(z) = O forz € P, F(z) = 1for z € M\ Q and F(z) = f(|vg]]3) for
Z = (8z,Vz) € Sge. In view of Lemma 2.2 above, for § > 0 sufficiently small the
function Fs = 6 F belongs to Haa(M,w; ag, 0o )- 1

Proof of Proposition 1.7: Note that every function H in H.q(W,w;ép, pt) can
be viewed as one in Heq(M,w; ap, @) in a natural way, and so (6) follows.

If the inclusion W — M induces an injective homomorphism m (W) —
m1(M) then each function H in M, (W,w;dag,pt) can be viewed as one in

o i(M,w; a9, o). Therefore we get (8).

To prove (10) let us take a function H € Hyq(M \ W,w; &oo, pt). Suppose
that P(H) C Q(H) C Int(M \ W) are submanifolds associated with H. Then
H = maxH on (M \ W)\ Q. Therefore we can extend H to M by setting
H = max H on W. We denote this extension by H. Since we have assumed
that ag has a cycle representative whose support is contained in Int(W) C M\@Q,
H belongs to Haea(M,w; o, ag)-

If H € Hoy(M \ W,w; éco,pt) and the inclusion M \ W — M induces an
injective homomorphism (M \ W) — m(M) then the above H belongs to
H2 (M, w; o, atg). This implies (11).
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For (12) we only need to prove that Wg(M,w) < CS)Z(M,w;pt,a) since
CS)Z(M,w; pt,a) < Cg;)(M,w; pt,a). For any given symplectic embedding
: (B®(r),wp) — (Int(M),w) and sufficiently small ¢ > 0, we can choose a
representative of & with support in M\ (B?"(r—¢)) because dim a < dim M —1.
By (5) and (7) we have

n(r—€) = We($(B*(r—¢)),w) < Cuz($(B™(r-¢)),w) < CFy(M,w; pt, ).

With € — 0 we arrive at the desired conclusion. 1

Proof of Theorem 1.8: 'To prove (13) let W and ayp, a satisfy the assumptions
in Theorem 1.8. For H € Hoq(W,w;a0,pt) and G € Hea(M \ W,w; o, pt)
let P, C Int(@1) C @1 C Int(W) and Py C Int(Q2) C Q2 C M\ W be
corresponding submanifolds as in Definition 1.2. Then H|p, = 0, H|w\1nt(Q,) =
max H and G|p, = 0, G|(a\w)\Int(Q,) = Mmax G. Define K: M — R by

K@) = { 2@, ifzew,
)=\ maxH + maxG — G(z), ifxe M\W.

This is a smooth function and belongs to Heq(M,w; ag, 0 ) with P(K) = Py
and Q(K) = M \ Int(P,). But max K = max H + maxG. This leads to (13).
|

The following corollary of Theorem 1.8 will be useful later on.

COROLLARY 2.4: Under the assumptions of Theorem 1.8, let (N, o) be another
closed connected symplectic manifold and 3 € H,(N;Q) \ {0}. Then

CE(N x W,0 ®w; B x &g, pt) + CEL(N x (M\ W),0 & w; B X doo, pt)
< COL(N x M,0 @ w; 8 X ag, B X eo),
and

CE(N x W,0 @ w; B x ag,pt) + CED (N x (M\W),0 & w; B X oo, pt)
< C}(;;)(N X M,0®w;B X ag,B X ax)

if both inclusions W — M and M \ W «— M also induce an injective homo-
morphisms m (W) — my(M) and mi(M \ W) — =y (M).



30 G. LU Isr. J. Math.

3. Proof of Theorem 1.10

We wish to reduce the proof of this theorem to the arguments in [LiuT).
Liu-Tian’s approach is to introduce the Morse theoretical version of Gromov—
Witten invariants. In their work the paper [FHS] plays an important role. To
show how the arguments in [LiuT)] apply to our case we need to recall some
related material from [FHS].

Consider the vector space S = {S € R?**2" | ST = S} of symmetric (2nx2n)-
matrices. It has an important subset Sﬁ% consisting of all matrices S € § such
that for any four real numbers a, b, o, 8 the system of equations

(30) { (SJO - J()S ke algn - bJ())C =9

(8Jo — JoS — alzn, — bJg)S¢ — af — BJo¢{ =0

has no nonzero solution ¢ € R?®™*%" where I,, denotes the identity matrix in

R™*™ and
(0 -I
Jo = ( L )

It has been proved in Theorem 6.1 of [FHS] that for n > 2 the set S2 is open
and dense in § and T®TS® € S22 for any S € 52, any ® € GL(n,C) N O(2n)
and any real number 7 # 0. In view of Definition 7.1 in [FHS] and the arguments

in [McSl] we introduce

Definition 3.1: A nondegenerate critical point p of a smooth function H on
a symplectic manifold (M,w) is called strong admissible if it satisfies the
following two conditions:
(i) the spectrum of the linear transformation DXy (p): T,M — T,M is
contained in C\ {\i| 27 < £X < +o0};
(ii) there exists J, € J(TpM,wy) such that for some (and hence every) unitary
frame ®: R?" — T,M (i.e., ®Jy = J,® and ®*w, = wp) we have
S = JO(I)—IDXH(]))‘I) €S

reg*

Definition 3.2: An (0g, o )-admissible (resp. (g, o )°-admissible) function
H in Definition 1.2 is said to be (ag, @ )-strong admissible (resp. (ag, 000 )°-
strong admissible) if instead of condition (5) it satisfies the stronger condition

(5") H has only finitely many critical points in Int(Q) \ P, and each of them
is strong admissible in the sense of Definition 3.1.

Let us respectively denote by

(31) Hoad(M,w; g, @0o) and M, (M, w; ag, o)
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the set of (ag, e )-strong admissible and (g, ®oc ) °-strong admissible functions.
They are subsets of Haq(M, w; ap, o) and H, 4 (M, w; ag, 0 ) respectively. The
following lemma is key to our proof.

LEMMA 3.3: Ifdim M > 4, then Hsoq(M,w; 0o, o) (TeSp. HS (M, w; g, o))

sad
is C0-dense in Haq(M,w; g, o) (resp. H2 (M, w; g, aoo)).

Proof: Let F € Haa(M,w;ao,000) (tesp. H2 (M, w; a0, 000)). We shall
prove that for any small € > 0 there exists a G € Hgug(M,w;ag, o)
(resp. M, (M, w; g, &) such that

(32) max F' > maxG > max F —e.

Our proof is inspired by the proof of Proposition 3.1 in [Schl].

Let Cr (resp. cr) be the largest (resp. smallest) critical value of F in
(0,max F'). If there are no such critical values, there is nothing to show. If
cr = Cp, then it is the only critical value of F' in (0, max F'), and this case can
easily be proved by the following method. So we now assume cp < Cr. Then
by Definition 1.2(5) we have

0<crp < Cgp <maxF.

Let C(F) be the set of critical values of F. It is compact and has zero Lebesgue
measure, so that for small € > 0 we can choose regular values of F,

by < aj <by < <ap_y <bp_; <ap,

such that:
(i) 0< by <crand Cr < aj, <maxF.
(i) {a},¥] Cler, CRI\C(F),1=1,...,k— 1.
(iii) Zf;ll(b; —aj)+ by + max F —a}, > max F —e.
Furthermore, we may also take regular values of F,

bp <oy <by < - <agp_1 <bgo1 <ay,

such that

b0<b6, ak>a§c, a;<ai<b¢<b§, i=1...,k—1,
k-1
Z(bi—ai)+b0+maxF—ak > max F — 2e.

i=1



32 G.LU Isr. J. Math.

Consider the piecewise-linear function f: R — R,

(¢ for ¢ < by,

bo for by <t < ay,
t—a;+bo for a; <t < by,

b1 — a1 + b for by <t < as,

fiy={ t—aa+(br—a1) +bo for ag <t < by,

for ---,

t— a1+ YIT(bi - ai) +bo for ap_y <t < by,
E;:f(bi —a;) + b for b1 <t < ay,
xt—ak+2f;f(bi —a;)+bo for t > ay.

Then min{f(t)| t € [0, max F]} = 0 and

k-1
max{f(t)| t € [0,max F|} = max F — a; + Z(bi —a;) + by > max F — 2e.

i=1

Note that by < a1 < b < -+ < ag—1 < bg—1 < ay, are all nonsmooth points of f

in (0, max F'). By suitably smoothing f near these points we can get a smooth

function h: R — R satisfying:

(h)1 0<AK(t) <1forteR,;

(R)2 0 < R(t) < 1 for t € [0,8) U (af, max F]U (UL (al, B));

(h)s h(t) = £(t) for t € UiZg b}, aly);

(h)a h(t) = f(t) near t = 0 and ¢t = max F.

Set H =ho F. Then (h); and (h)s imply that H € Heq(M,w; ag, o) and

k-1
(33) maxH =h(maxF)=maxF —ay + Z(b,- —a;) + bp > max F — 2e.
i=1
Furthermore, one easily checks that
(H)1 The critical values of H in (0, max H) are exactly bo, > 1_, (b; — a;) + bo,
ji=1,..., k-1,
(H)2 The corresponding critical sets are respectively {y < F < a|} and
() <F<aj}h,i=1...,k-1;
(H)s H=b on {by < F <al};
(H)s H=3Y_1(bi—a;)+byon {t; < F<af,},j=1,... k-1
For each 0 < s <  min{a},, — b}, b, — a, by, max F — a}| 0 < i < k — 1} we set

k-1
N, = U{b;—s <F<aj, +s}
i=0
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Since the set of regular values of F' is open, both Ny and N, with sufficiently
small s > 0 are compact smooth submanifolds with boundary. For any open
neighborhood O of Ny we have also Ny C O if s > 0 is small enough. By (H)s
and (H)4, V4V4H =0 on Ny and thus we can choose

1
0<é< Zmin{ag+1 ~b,,b, — a, by, max F —a}| 0 <i <k~ 1}

so small that

sup [[VyV,H (@)l < p/2
TEN2s

Here p is given by Lemma 2.2. Let us take a smooth function L: M — R such
that
(L)1 supp(L) C N;
(L)2 | Lllc> < p/2 (and thus sup,¢,, V4 Vg(H + L)(2)|l4 < p);
(L)s h(b; —20) < H(z) + L(z) < h(aj,, +26) for x € {b, -6 < F < aj, +6},
i=0,... k-1
(L)s H + L has only finitely many critical points in N5 and each of them is
strong admissible.
The condition (L)4 can be assured by Lemma 7.2 (i) in [FHS]. To see that (L)3
can be satisfied, note that (h); implies that h(b; — &) < H(z) < h(aj,, +0) as
b~ < F(z) < aj,,+6. By the choice of § we have by —2§ > 0, a),+26 < max F
and
aj +0,a; +20,b; — 28,b; — § € (aj,b), i=1,...,k—1.

It follows from (h); that for ¢ =0,...,k -1

(34) h(b; —20) < h(b; — §) < h(b}) < h(aj,1) < hlajyy +6) < h(ajy, +20).

Using these and (L)2 we can easily choose L satisfying (L)s. Set G = H + L.
Then P(G) = P(H), Q(G) = Q(H) and

(35) maxG =maxH and minG =minH =0.
Now we are in position to prove
G € Hoad(M,w; 00, 000)  (resp. Hoga(M,w; g, o).
First, the above construction shows that all critical values of G in (0, max G)

sit in
k~1

U (08 — 28), h(aly, +26))

i=0
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and the corresponding critical points sit in Ns. It follows that G has only finitely
many critical points in Int(Q) \ P and each of them is strong admissible.

Next we prove that X has no nonconstant fast periodic orbits. Assume
that « is such an orbit. It cannot completely sit in M \ N5 because G = H in
M \ Ns. Moreover, Lemma 2.2 and (L), imply that -y cannot completely sit in
Nas. So there must exist two points y(¢;) and +(t2) such that v(t;) € N5 and
v(ta) € ON2s. Note that all possible values G takes on 9N (resp. ONys) are

k(b — 8),h(a;,, +9), i=0,...,k—1
(vesp. h(b; — 26), h(a;;, +20), i=0,...,k—1).

By (34) any two of them are different. But G(vy(t1)) = G(y(t2)). This con-
tradiction shows that X has no nonconstant fast periodic orbit. Clearly, this
argument also implies that X has no nonconstant contractible fast periodic
orbit if F' € HY,;(M,w;ap, oo )-

Finally, (33) and (35) together give

max G > max F' — 2e.

The desired conclusion is proved. [ |

As direct consequences of Lemma 3.3 and (2) we have

(36) Cg)Z(M,w; Qo, 0o ) = sup{max H|H € Hga(M,w; ag, 00)},
Cg?(M,w;ao,aoo) =sup{max H| H € HS_,(M,w; ag, 0o )}.

sad

Proof of Theorem 1.10: We only prove (15). The proof of (16) is simi-
lar. Without loss of generality we assume that CS)Z(M ,W; Qg, Goo) > 0 and

GW(M,w; ag, @) < +00. We need to prove that if

(37) U 4. 0.m+2(C; 00,000, b1, Bm) # 0

for homology classes A € Ho(M;Z), C € Hi(Mym2;Q) and By,...,08n €
H.(M;Q) and integers m > 1 and g > 0, then

(38) CJ(:)Z(M,w;ao,aoo) < w(A).

Arguing by contradiction, we may assume by (36) that there exists H €
Hsad(M,w; ag, o) such that max H > w(A). Then we take > 0 such that

(39) max H — 2n > w(A).
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By the properties of H there exist two smooth compact submanifolds P,Q C M
with connected boundary and of codimension zero such that the conditions
(1), (2), (3), (4), (6) in Definition 1.2 and (5’) in Definition 3.2 are satis-
fied. Changing H slightly near {H = 0} and near {H = max H} in the class
Hsad(M,w; ag, e ) and using Lemma 2.1, we can choose embeddings

®: [-2,0] x 0Q — @\ Int(P) and ¥:[0,2] x OP — Q\ Int(P)

such that:
(i) @({0} x 0Q) = 0Q and ¥({0} x dP) = 9P;
(i) ®([-2,0] x 8Q) N ¥([0,2] x OP) = 0;
(ili) H has no critical points in ®([—2,0) x 0Q)U¥((0, 2] x IP) and is constant
mg on ®({s} x0Q) and ny on U({t} xOP) for each s € [-2,0] and ¢ € [0, 2];
(iv) H(z) < m, for any x € M\ Q, and s € [-2,0], and n; < H(z) for any
ze€ M\ P, and t € 0,2, where

Qs =(M\Q)Ud(|s5,0) x Q) and P, = PU¥([0,t] x dP).
Notice that the above assumptions imply
ms <myg <maxH and 0<n <ny

for —2 <s<s <0and 0 <t <t <2 Moreover, @S (resp. ﬁt) is a smooth
compact submanifold of M with boundary ®({s} x 9Q) (resp. ¥({t} x aP)).
Clearly, Q, NP, = 0. For 7 € [0,2] we abbreviate

B, =P,uQ_,.
By the properties of H and (39) we find § € (0,1) such that

(40) m_gs>maxH —n, ngs<n and sup ||V VeH(z)|lg < p/2,
z€Bas

where p is as in Lemma 2.2. As before we may choose a smooth function
L: M — R such that

(a) supp(L) C Int(Bs);

(b) ILllc> < min{p/2,n} (and thus sup,e s, Vo V,(H + L)(@)ly < p;

(¢) H + L has only finitely many critical points in Int(Bjs), and each of them

is also strong admissible;
(d) m_g5 < H(z) + L(z) for z € Int(Q_s);
() H(z)+ L(z) < ngs for = € Int(F;).
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As above, condition (c) is assured by Lemma 7.2 (i) in [FHS]. Set F = H+ L. If
x € Bjs then either F(z) > m_ys or F(z) < nys. On the other hand, the above
(a) and (iv) imply that ngs < F(z) < m_gs if £ € M \ Bys. This means that
a solution of £ = Xr(z) cannot go to Bs from M \ Bys because F is constant
along any solution of £ = Xp(z). So any nonconstant solution of £ = Xp(x)
lies either in Bys or in M \ Bs. It follows from (a) and (b) that £ = Xp(z)
has no nonconstant fast periodic solutions. Using (40) and (a)-(e) again we get
that F is a smooth Morse function on M satisfying

(F}; each critical point of F is strong admissible;

(F)2 A-F has no nontrivial periodic solution of period 1 for any A € (0, 1J;
(F)3 F(z) > maxH —n for ¢ € Q_5, and F(z) < 7 for any z € Pj;

(F)y max F < maxH +n and min F > —7.

As a consequence of (F); we get that J,q(M,w, Xr) is nonempty. From
Lemma 7.2(iii) in [FHS] we also know that J,q¢(M,w, Xr) is open in J(M,w)
with respect to the C%-topology. Therefore, we may choose a regular J €
Jud(M,w, XF) and then repeat the arguments in [LiuT] to define the Morse
theoretical Gromov-Witten invariants

U4 5, 2Fg.m+2(C5 00, Coos Biy - - -, Bm)
and to prove
(41)
U 4,5, 2F,g,m+2(C5 a0, Qoo, B, - - ., Bm) = Y a,g,m+2(C5 00,000, 815+ -+, Orm)

for each A € [0,1]. As in Lemma 7.2 of [LiuT| we can prove the corresponding
moduli space FM(cg, ¢oo; J1, F, A) to be empty for any critical points ¢q € P;
and ¢y € @_5 of F. In fact, otherwise we may choose an element f in it. Then
one easily gets the estimate

(42) 0 < E(f) = Fleo) — Flcoo) + w(A)-

(Note: From the proof of Lemma 7.2 in [LiuT] one may easily see that the energy
identity above their Lemma 3.2 should read E(f) = w(A) + H(c-) — H(c4).)
From the above (F)3 and (42) it follows that

max H — 2n < F(cw) — F(eo) < w(4).
This contradicts (39). So FM(co, Coo; J1, Fy A) is empty and thus

‘IIA,JLF,!},m'*'Q(C; QAg, Ooos )817 cee 1ﬁm) =Q.
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By (41) we get ¥4 g.m+2(C;00,000,01,...,0m) = 0. This contradicts (37).
(38) is proved. [ |

4. Proofs of Theorems 1.15, 1.16, 1.17 and 1.21

Proof of Theorem 1.15: We start with the matrix definition of the Grassman-
nian manifold G(k,n) = G(k,n;C). Let n = k + m, M(k,n;C) =
{A € C**"| rank A = k} and GL(k;C) = {Q € C**¥| detQ # 0}. Then
GL(k; C) acts freely on M(k,n;C) from the left by matrix multiplication. The
quotient M (k,n;C)/GL(k; C) is exactly G(k,n). For A € M(k,n;C) we denote
by [A] € G(k,n) the GL(k; C)-orbit of A in M(k,n;C), and by

Pr: M(k,n;C) - G(k,n), A [A]

the quotient projection. Any representative matrix B of [A] is called a
homogeneous coordinate of the point [A]. For increasing integers 1 < o <
< < ap < nlet {aktr,. -, } be the complement of {a1,...,ak} in the set
{1,2,...,n}. Let us write A € M(k,n;C) as A= (4;,...,An) and

Aoyan = (Aays - Aay) €CFF and Agy, ) 0n = (Aagsrs - s Aa,) € CFX™,

where Ay, ..., A, are k x 1 matrices. Define a subset of M(k,n;C) by
Vi,...,ox) = {A € M(k,n;C)| det An,...a, # 0}

and set U(ay,...,ax) = Pr(V(aq,...,ax)) and

O(ay,...,ax): Ula,..., o) — C>*™ = Ckm,
[A] = Z = (Aay-ar) M Aarsran-
It is easily checked that this is a homeomorphism. Z is called the local coordi-
nate of [A] € G(k,n) in the canonical coordinate neighborhood U(ay, ..., ax).

Note that for any Z € C**™ there must exist an n x n permutation matrix
P(ay,...,ax) such that for the matrix A = (I'®), Z)P(ay, ..., ax) we have

(43) Agyc =I®) and Agy,pan = 2.

Hereafter I®) denotes the unit k x k matrix. It follows from this fact that
for another set of increasing integers 1 < 8; < --- < Bx < n the transition
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function ©(f1, ..., 0k) 0 O(a1,...,ar) ! from O(ay,...,ax)(U(ay,...,ar)) to
O(b1,...,0k)({U(B1,. ., B)) is given by

Z—W=Ws.0.)" Wpyspas

where (Wg,...5,, Wgy1--8.) = (I, Z)P(aa, ..., ax)P'(B1,. .., Bk). It is not hard
to check that this transformation is biholomorphic. Thus

(44) {(Ulen, ... ax),0(c, .. .,c)) 1 < o1 < - < ag < n}

gives an atlas of the natural complex structure on G(k,n), which is called the
canonical atlas. It is not hard to prove that the canonical Kahler form o)
on G(k,n) in such coordinate charts is given by

=1 _ — . =1 —

5 tr[(I® + 2Z) Mz A (1™ + 7' 2)dZ] = 5~ 001log det(I® + 27,
where dZ = (dzij)1<i<k,1<j<m and 8, 9 are the differentials with respect to the
holomorphic and antiholomorphic coordinates respectively (cf. [L]).

On the other hand, it is easy to see that

Thn = —;—185 log det(AZI)

J=1 _ — _ — —
== tr[~(AA) ' dAANA (AA) T AdA + (AR 'dA A dA)
is an invariant Kéhler form on M (k,n;C) under the left action of GL(k;C).
Thus it descends to a symplectic form 7%, on G(k,n;C). If A= (I®),Z) it is

easily checked that

v 2‘1 tr[—(AZ) " dA N A (AX) 1 AdA + (AZ)dA A dA]
=Y 2‘1 tr[~(I® + ZZ) Z ANZ (I®) + 2Z) ' 2dZ

+(I® + 27y 'dZ AdZ]

:—V;l (1% + 2Z)1dZ A (I + 7' 2)"\dZ).

It follows that 7%, = o(*™). Since Pr* 7, = 71, we arrive at
(45) Pr* obn) = Tk, n-

As usual, if we identify z = (211, ..., Z1m» 2215 - - » Z2ms -+ - » Zk15 - - -, Zkm) € CF™
with the matrix Z = (2i;)1<i<k,1<j<m the standard symplectic form in C*™

becomes
Ylbm) — Y1

~5— trldZ dZ].
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Denote

MO(k,n;C) = {A € M(k,n;C)| AA = I®)}.
Then
(46) Tl M0 (i) = W™ 10 (6 mic)-

In fact, since AA = I® we have that dAA + AdA = 0 and thus
v-1

- tr|—(AA ) 'dAAA (AA) ' AdA + (AA)'dA N dA)
:———V;l tr[dA A dA) + Y 2—1 tr[dAA A dAA].

‘We want to prove the second term is zero. A direct computation yields

k k n

tI‘[dAZ/ N dA-A/] = Z E(Z djsda,-s) A (i disdajs)
= (

.

1j=1 s=1 s=1

k n

Z Z Zdisdajs) A (Zn: djsdais) (interchanging i, 5)

=1 i=1 s=1 s=1

k k
Z Z Zaﬁsdals /\ (Z alsda]s

i=1j=1 s

.

Hence tr[dAA A dAZ'] = 0. (46) is proved.
LEMMA 4.1: For the classical domain of the first type (cf. [L])
Ri(k,m)={Z e CP*™| 1®) _ 27 > ¢},

the map

&: (R[(k,m),w(km)) SN (Ckxn’w(kn)), AN (\/I(k) — Z'Z_/,Z)

is a symplectic embedding with image in M°(k,n;C), and therefore we get a
symplectic embedding ® = Pro® of (R;(k,m),w*™) into (G(k,n;C),c®™).

Proof: Differentiating

8(2)8(2) = \/ Ik — ZZ’\/IUc) ~Z7 + 27 =I®

twice on both sides we get

dy/1® - 2Z' \dy/1® - 27’ = 0.
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This leads to
dB(Z) AN dB(Z) =dZ NdZ, ie.,d WD) = tkm),

Using (45) and (46) we get that the composition ® = Pro@® yields the desired
symplectic embedding from (R;(k,m),w*™) to (G(k,n;C),s(k™). .

LEMMA 4.2: The open unit ball B%*™(1) is contained in Rr(k,m).

Proof: 1t is well known that for any Z € CkX™ with k < m (resp. k > m)
there exist unitary matrices U of order &£ and V of order m such that

UZV = (diag(\1,..., M), 0) (resp. UZV = (diag(u1,-- -, pim), 0)')

for some A; > -+ > Ag > 0 (resp. u1 > -+ > pm > 0), where diag(Ay, ..., Ax)
(resp. diag(us,...,4m)) denote the diagonal matrix of order k (resp. m), and
O is the zero matrix of order k x (m — k) (resp. (k — m) x m). Therefore,
Z € By(k,m), ie, I®) —~ ZZ' > 0, if and only if A; < 1, j = 1,...,k (resp.
pi <1,i=1,...,m). Let Z € B?*™(1). Then

k143 k13
1Z)* = ZZlZUI =t1(Z2Z) = Z (resp. Zui) <1
=1 j=1 j=1 k=1
and thus A\; < 1 (resp. u; < 1), i.e., Z € Ry(k,m). |

Now Lemma 4.1 and Lemma 4.2 yield directly
(47) We(G(k,n),0®™) > We (R (k,m),w*™)) >«

for m = n — k. Moreover, for the submanifolds X %) and Y %) of G(k,n) the
computation in [SieT, Wi] shows ¥ .n g 3(pt; [X®™)], [Y*™] pt) = 1. Thus
(12) and Theorem 1.13 lead to

(48)  We(G(k,n),0®™) < C2)(G(k,n), ™™ pt,a) < gEM(LEM) = 7

for @ = [X®™)] or a = [Y(*)] with k < n — 2. Hence the conclusions follow
from (47) and (48). Theorem 1.15 is proved. 1

Proof of Theorem 1.16:  Since ¥ 1 k.n o 3(pt; [ X *F™), [Y*™)], pt) =1 it follows
from Proposition 7.4 that

W 4.0,3(pt; [M] x [XEM] [M] x [YE™] pt) £ 0
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for A =0 x L™ where 0 denotes the zero class in Ho(M;Z). Theorem 1.13
implies

CEP M x G(k,n),w ® (a0™™); pt, [M] x @) < |alx
for o = [X®)] or a = [Y(*™] with k < n — 2. This implies (20).

For (21) we only prove the case r = 2 for the sake of simplicity. The general
case is similar. Let us take A = @>_, L*™) ¢ Hy(W,Z). Then Q(4) =
(Ja1] + |az])m. Note that
\IIL(ki,"i’,Oﬁ(Pt;ptv[X(ki'm)]’[Y(ki’ni)]) = \IIL(’“iv"i),OB(pt;pt’ [Y(ki’ni)]v [X(ki’ni)])

=1
because the dimensions of [X(:m)] and [Y*i7)] are even for i = 1,2.
Proposition 7.7 gives
W 0a(ptpt, [XB1m) x [y ke [y bam)] [ ke
= \IIL(klr"l),O,B(pt;pt7 [X(khnl)]’ [Y(khnl)]’pt)
Uy kam0 0,3(pt; pt, [Y 27, [X Bam2)]) = 1)
W 00(ptipt, (X)) x [Xama)] [y Gm)] s [y hama)
= ‘I’L(klml),o,a(pt;pt; [X(klynl)]a [Y(kl’nl)])
U ptka ) ,3(p; pt, [X F2m?)], [y Rama)]) = 1,
As before it follows that
Cia2 (W, D pt, X B s [y $2m]) < Q(A) = (laa] + laz,
Ciz (W, R, [X E2m0] s [X 5272)]) < Q(A4) = ((aa | + Jaz ),
Clzz (W, Qs pt, [y B1m)] x [y (272)) < Q(A) = (jaa + lag),
proving (21).

To see (22) we assume r > 1 because of the result in Theorem 1.15. Tt
immediately follows from (12) and (20) that

We(G(ki,n1) X - - X Glkp, ), 0®0™) @ ... @ gBrmr)y < 1,

On the another hand, by Lemma 4.1 we have a symplectic embedding from
(R](k1,n1) X e X R[(kr,nr),w(klnl) DD w(k’nr)) to (G(kl,nl) X oee X
G(ky,ny), o) @ ... @ g(*rmr)), Moreover, Lemma 4.2 implies that
B2klnl+"‘+2k’n’(1) c szlm(l) X oor X B2k,nr(1)
C BRy(ki,ny) X« X Rp(kp,nyp).
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These give
We(Glk1,n1) X -+ X Glkp,ny),0F0™) @ .. @ gtbrne)y >

and thus desired (22). 1

Proof of Theorem 1.17: Without loss of generality we may assume a > 0.
Firstly, as in the proof of Theorem 1.16 one shows that

¥ a,03(pt; [M x CP"],[M x pt], pt) # 0
for A = [pt x CP'], and thus arrive at
(49) ng)(M x CP",w @ aon;pt, [M x pt]) < ar.
Next we prove
(50) CZ(M x B (r),w®wo; pt, [M x pt]) = CZ)(M x B¥(r),w®wo; pt, pt).

By Definition 1.2 it is clear that the left side in (50) is less than or equal to
the right side in (50). To see the converse inequality we take H € Hyq(M x
B*™(r),w @ wo;pt,pt). Let P = P(H) and Q = Q(H) be the corresponding
submanifolds in Definition 1.2. Since

P C Q C Int(M x B¥(r)) = M x Int(B*(r))

and @ is compact there exists n € (0,7) such that @ C M x B?"(n). (Note
that here we use M = (.) Therefore, H may be viewed as an element of
Haa(M x B (r),w @ wo; pt, [M x pt]) naturally. This implies that the left side
in (50) is more than or equal to the right side in (50).

Thirdly, as in [HZ1, HZ2] one proves

(51) CS)Z(M x B™(r),w @ wo; pt, pt) > wr?
for any 7 > 0. By (49), Theorem 1.5 (v), (50) and (51) we can obtain
am > C’g;)(M x CP",w @ agp;pt, [M x pt|)
> CS)Z(M X CP",w & aon; pt, [M X pt])
> Cffy (M x B*(5v/a),w & wo; pt, [M x pt])

= CB)(M x B™(5:/a),w ® wo; pt, pt)

> n6a
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for any § € (0,1). Here we use the symplectic embedding (B*"(6+/a),wp) —
(CP",a0,) in the proof of Corollary 1.5 in [HV2] for any 0 < § < 1. Taking
6 — 1, we find that for § = 1 the above inequalities are equalities. Together
with Lemma 1.4 we obtain (23) and C(M x B*(r),w @ wg) = nr? in (24).

To prove the other equality of (24), i.e., C(M x Z?"(r),w @ wg) = 7r?,
note that each H € Hoq(M x Z2%(r),w & wo;pt,pt) can naturally be viewed
as a function in Haeq(M x B2(r) x R*""2/mZ2"~2 w @ wy ® wss; pt, pt) for suf-
ficiently large m > 0. Here wg is the standard symplectic structure on the
tours R?"~2/mZ2"~2. It follows from the equality just proved in (24) that
max H < 7r? and so

CUP (M x Z(r),w & wo; pt, pt) < 7’
for any r > 0. The desired conclusions easily follow. |

In order to prove Theorem 1.21 we need the following lemma told to me by
Professor Dusa McDuff and Dr. Felix Schlenk.

LEMMA 4.3: For any two closed symplectic manifolds (M,w) and (N, o),
(M xN,wdo)>c(M,w)+c(N,o)
for c = cpz, ¢§, and Crz, Cy 5.

According to Lemma 1.4 it suffices to prove Lemma 4.3 for cyz and cg .
Let F and G be admissible functions on M and N, respectively. Since the
Hamiltonian system for F'+ G splits, we see that F'+G is an admissible function
on M x N. From this Lemma 4.3 follows at once.

Proof of Theorem 1.21: We denote by (W,w) the product manifold in Theo-
rem 1.21. Without loss of generality we may assume a; > 0,4 =1,...,k. Let
A; = [CP"] be the generators of Hy(CP™;Z), i =1,...,k. They are indecom-
posable classes. Since [Y(l’"i)] = pt, it follows from the proof of Theorem 1.16
that

\IlAi,O,S(pt;pt’pta [X(Lnl)]) =1

for i = 1,...,k. Set A = A; x --- x A;. Note that each (CP™, a;0,,) is
monotone. By Proposition 7.7 in the appendix we have

Va0,3(pt;pt,pt, B) =1
for some class § € H.(W, Q). Thus by Corollary 1.19 we get that

(52) e(W,w) <w(A) =(a1+ -+ ap)m
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for ¢ = cyz, ¢}z On the other hand, Lemma 4.3 yields

k
c(W,w) > Zc(CP”i,aiani) =(a1+ - +ap)m

i=1

Lo)
for c = cuz, ¢tz [ |

5. Proof of Theorems 1.22 and 1.24

Proof of Theorem 1.22: Under the assumptions of Theorem 1.22 it follows from
Remark 1.11 that the Gromov—Witten invariant

U 4,9,m+2(m*C5 00, PD([w]), 01, . .., am) # 0,
and thus Theorem 1.10 leads to
C2). (M, w; ag, PD([w])) < +oc.

For a sufficiently small ¢ > 0 the well-known Lagrangian neighborhcod theo-
rem due to Weinstein [Wel] yields a symplectomorphism ¢ from (Ue, weap) t0
a neighborhood of L in (M,w) such that ¢|;, = id. Since L is a Lagrange sub-
manifold one can, as in [Lu3, V6], use the Poincaré-Lefschetz duality theorem
to prove that there exists a cycle representative of PD([w]) whose support is
contained in M \ ¢(U,) because w is exact near L. By (6) we get that

Cg‘)z(Ue, Wean; dOapt) = Cg)z((b(Ue)a Wi dOa pt)

53
(53) < C&.(M,w; a0, PD([w])) < +00.

Here we still denote by &g the images in H {(U.,Q) and H.(¢(U:},Q) of &g
under the maps induced by the inclusions L — U, and L — ¢(U,). Note that
for any A # 0 the map

O\:T*L > T*L, (q,v")+ (g, "),
satisfies ®jwecan = Awean. Theorem 1.5 (iv), (53) and this fact imply that
c® g, pt
HZ( ¢y Weany AQ; P ) < oo

for any ¢ > 0.
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In the case g = 0, since the inclusion L — M induces an injective homo-
morphism 7;(L) — w1 (M) and thus ¢(U) — M also induces an injective
homomorphism 7 (¢(U,)) — m1(M) it follows from (8) that

C2 (U, wean; G0, pt) = C3 ($(Ue), w; &0, pt)
< C2) (M, w; ag, PD([w])) < +00,

and thus that C}f;)(Uc,wcan; g, pt) < +oo for any ¢ > 0.
In particular, if L is a Lagrange submanifold of a g-symplectic uniruled
manifold (M,w), then we can take ag = pt and derive from (7)

CHZ(UC7 wcan) = CHZ(UCawcan) < 400
for any ¢ > 0, and from (9)
C?—IZ(UC»wcan) = C;—IZ(Umwcan) < 400

for all ¢ > 0 if ¢ = 0 and the inclusion L — M induces an injective homo-
morphism 71 (L) — m(M). Here we use Lemma 1.4 and the fact that U, is
a compact smooth manifold with connected boundary and of codimension zero
because dim L > 2.

To see the final claim note that (M, —w) is also strong g-symplectic uniruled.
It follows from Proposition 7.5 that the product (M x M, (—w) @ w) is strong
0-symplectic uniruled. By the Lagrangian neighborhood theorem there exists
a neighborhood N (A) C M x M of the diagonal A\, a fiberwise convex neigh-
borhood N(My) C T*M of the zero section My, and a symplectomorphism
P N(D), (—w) & w) — (T*M,wean) such that ¢(z,z) = (x,0) for z € M.
Note also that the inclusion A — M x M induces an injective homomorphism
71 (A) = m(M x M). The desired conclusion follows immediately. |

Proof of Theorem 1.24: The case dim M = 2 is obvious. So we assume that
dim M > 4. We follow [Bil]. Let p: L = v(N) — N be the symplectic normal
bundle of N in (M,w). It may naturally be viewed as a complex line bundle
with an obvious S'-action

t-(bv) = (be*™), (byv)€L and teS'=R/Z

Consider the projectivized bundle 7: P(L @ C) — N whose fiber at b € N is
the complex projective space P(L, & C). This bundle has a natural S'-action
induced by the action t - z = e =27z of S! on each fiber summand of C, i.e.,
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t-(b,[v:2]) = (b,[v: e ?m]). It has also two special sections, the zero section
Zy = P({0}&C) and the infinity section Z,, = P(L®{0}). One can construct an
S'-invariant symplectic form on P(L&®C). Roughly speaking, fix any Hermitian
metric || - || on L and denote by py : S(L) = {(b,v) € L|||v]| = 1} — N the
associated unit circle bundle of L. The latter is a principal S'-bundle. Let
§' = R/Z act on CP! and S(L) x CP* by

"2”“21], [20: 21] € cpP,

t-((b,v),[20: z1]) = ((b, 6_2””1;), (20 : 6_2"“21])

t-[20:21]=120:€

for (b,v) € S(L) and t € S*. Then the quotient manifold S(L) xg1 CP* and
P(L & C) can be identified via the diffeomorphism induced by the projection

®: S(L) x CP* = P(L®C), ((b,v),[z0: z1]) = (b, [200 : 21]).

Under this identification one has Zo = S(L)xs:{[0: 1]} and Zoo = S(L)x g1 {[1 :
0]}. If RV is the curvature of the Hermitian connection V on L, then py =
ﬁRV is a representing 2-form of the Chern class ¢;(L). Choose 0 < Ag < € so

that

Tx = w|n + Ao

are symplectic forms on N for all 0 < A < Ag. Let h: CP' — [0,1] be given by
h([z0 : z1])) = |z0]/(l20|? + |21]?). Define a map

H,\OZ S(L) X g1 (CPI — [0,)\0], [(b, 'U), [20 : 21]] — )\oh([ZO : Zl]).

Then all level sets H/\_Ol()\), A ¢ {0,)\o}, are diffeomorphic to S(L), and the
only critical submanifolds of Hy, are H /\_01(0) = Zp and H, '(Xo) = Zoo. As
in Example 5.10 in [McSal] (see also [MWo]) one gets an S!-invariant sym-
plectic form wy, on P(L & C) such that Zy, Z, and all fibers are symplectic
submanifolds. More precisely, wy,|z, = w|N§, walz.. = w|N + Aopn and each
fiber P(L C)p = CP! is equipped with an S'-invariant symplectic form with
corresponding moment map Agh, i.e., Agwrs. Here wpg is the standard Fubini-
Study form on CP! with fc p1 wrs = 1. Furthermore, Zy has normal bundle in
(P(L@C),wy,) with first Chern class [pn] = ¢1(L), see the appendix in [MWo].

As in [Bil], from a transgression 1-form oV of the connection V on L\ 0 one
can get a 1-form a € Q'(S(L)) such that da = —p}pn and a(X) = 1, where
X: S(L) — TS(L) is the fundamental vector field of the above S*-action on
S(L). The first condition means that H = Ker(a) is the horizontal distribution
of the connection on S(L) induced by V. By Exercise 5.11 in [McSal], under



Vol. 156, 2006 SYMPLECTIC INVARIANTS 47

the above identification P(L ® C) = S(L) xs1 CP*, the symplectic form wy, is
induced by the S'-invariant closed 2-form

Q)\o = pfv(w|N) - )\od(ha) + )\()UJFS

on S(L) x CP™.

Set X1, = P(L®C). Take an almost complex structure Jy € J(N,w|n). By
shrinking Ag > 0 we can assume that Jy is (w|y +Apn)-tame for all 0 < A < Ay,
ie., Jy € Jr(N,w|ny + Apn). (This is not needed in the case of [Bil] because
pn can be taken as w|y there.) Notice that the above horizontal distribution
H over S(L) naturally induces a horizontal distribution H = ®,(H x 0) on X,.
So TX = Heo 9, where V C TX 1 is the vertical subbundle whose fiber at
ge Xy is qu = Ker(dn(q)) = Tq(XL)r(q). Actually H is exactly the horizontal
distribution on P(L & C) induced by the sum of the connection V on L and the
trivial connection on C — N. Since Q,, = pj (| N+)\ohpN) +>\0(wps dhAa),
it is not hard to check that for any ¢ € X, the subspaces 'H and V are (Wi, )q-
orthogonal. Similar to [Bil] we construct an almost complex structure Jx on
X1, as follows; for any ¢ € X, Jxlﬁq is the horizontal lift of (Jy), by the
linear isomorphism dw(q)lﬁq: 'ftq — TrqyN, and the restriction of Jx to the
fiber (X1)r(q) = P(Lr(q) ® C) is the sum of the complex structure determined
by the Hermitian metric || -|| on L and of the standard one on C. This Jx is wy,-
tame because Jy € J-(N,w|ny + Apn) for all 0 < A < Ag. One easily sees that
the almost complex structure Jx is fibred on X in the sense of Definition 2.2
of [Mc2]. Hence with Jx we can prove as in Lemma 2.3 of [Lu6] that for the
homology class F' € Hy(Xy;Z) of a fibre of X; — N the Gromov-Witten
invariant

X ,w
\II;‘OLIS AO)(pt; [ZO]’ [Zw]’pt) =1

That is, (X,wy,) is a strong O-symplectic uniruled manifold in the sense of
Definition 1.14. By Theorem 1.10 we have

CE (X1, wagi Pty [Zeo)) < GWo(X L, wag; Py [Zoo]) < wiao (F) = A

Note that for any 0 < § < Ag the set {H), < 4} is a smooth compact sub-
manifold in X with connected boundary and of codimension zero that is a
neighborhood of Zj in Xj,. It is easily seen that the inclusion {H), < §} C X,
induces an injective homomorphism 71 ({H), < §}) — m(X). It follows from
(9) that

Sz ({Hxo < 6},wa,) < O (X1, w39t [ Zos]) < Do
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Identifying N with the zero section 0y, and thus Zj it follows from the symplectic
neighborhood theorem that for § > 0 sufficiently small, ({H,, < 8},wy,) is
symplectomorphic to a smooth compact submanifold W C M with connected
boundary and of codimension zero that is a neighborhood of N in M. Together
with Lemma 1.4 we therefore get

crz(Wow) =Chlz(Ww) < Xg<e.

The desired conclusion is proved.

6. Proof of Theorem 1.35

The idea is the same as in [Ka]. We can assume that n/k > 2. Following
the notations in the proof of Theorem 1.15, notice that the canonical atlas on
G(k,n) given by (44) has (}) charts, and that for each chart

(O(ay,...,ax),Ula,. .. ar))

Lemma 4.1 yields a symplectic embedding EIBQI...Q,C of (R;(k,m),w®™) into
(G(k,n),c®™) given by

Ze [(VI® = Z2Z  Z)P(ay,. .., o)),

where P(ai,...,ax) is the n x n permutation matrix such that (43) holds
for the matrix B = (I®), Z)P(ay,...,ax). Moreover, for the matrix 4 =

(VI® - ZZ' Z)P(ay,...,ax) we have
Aoy ooy = VI® = ZZ and  Agy,,an = 2.

417 = Ay 12 + 1 Aaiysanll?
— —/
= tr(Aa;ar Aag o) T tr(AaHl...a"AakH,,,an)
=tr(I® - 2Z) +t2(2Z) =k,

Note that

and therefore
1Aasanll? = k= | Aayssanll? = k = 1 Z]1%.
By Lemma 4.2 these show that $a1...ak(B2’""(r)) is contained in

Alag,...,ax;T)

6 _ {[B] € G(k,n) | for all A € [B]NM°(k,n;C),||Aay.arl? >k —1?}
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for any 0 < r < 1. Note that £ > 1 and n/k > 2. There must be two disjoint
subsets of {1,...,n},say {ay,...,ax}and {B1,..., Bk}, such that a1 < -+ < o
and By < -+ < B. For any two such subsets we claim that

Bay . (BF™(1)) N By, (B (1)) = 0.

In fact, Aai,...,ax;1) and A(By,...,0Bk; 1) are disjoint. Otherwise, let [B]
belong to their intersection and take a representative A of [B] in M%(k,n;C).
Then

k> || Agroan I + | Agyge |2 > 2k — 2

by (54). This contradicts the assumption that & > 2. Now the conclusion
follows from the fact that there exist exactly [n/k] mutually disjoint subsets of
{1,...,n} consisting of k numbers. |

Proof of (27): Notice that G(k,n) can be embedded into the complex projective
space CPN with N = n!/(n — k)!k! — 1 by the Pliicker map p ((GH]), and that
for any [-dimensional subvariety X of CPY one has

Vol(X) = deg(X) - Vol(L)

with respect to the Fubini-Study metric, where L is an [-dimensional linear
subspace of CPY (cf. [Fu, p. 384]). But it was shown in Example 14.7.11 of [Fu]

that
-2t (k=1 (k(n—k))!

n=kl-(n—k+1)! - (n—-1)"
It is well-known that the volume of a k(n — k)-dimensional linear subspace L of
cPY is

deg(p(G(k,n))) =

k(n—Fk) 7I_k(n—k:)

These give (27). |

7. Appendix: The Gromov—Witten invariants of product manifolds

In this appendix we collect some results on Gromov—Witten invariants needed
in this paper. They either are easily proved or follow from the references given.

Let (V,w) be a closed symplectic manifold of dimension 2n. Recall that for a
given class A € Hy(V;Z) the Gromov—-Witten invariant of genus g and with k
marked points is a homomorphism

Y e H( Mg Q) x Ho(V;Q)% — Q,
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where 2g + k > 3 and Hgyk is the space of isomorphism classes of genus g
stable curves with k marked points, which is a connected Kahler orbifold of
complex dimension 3¢ — 3 + k. In [Lu8] we used the cohomology H}(V;Q)
with compact support and the different notation QWX’;;,;J) to denote the GW-
invariants, since we also considered noncompact symplectic manifolds for which
the dependence on further data needs to be indicated. For closed symplectic
manifolds we easily translate the composition law and reduction formulas in
[Lu8] into the homology version, which is the same as the ones in [RT2]. Let
integers g; > 0 and k; > 0 satisfy 2¢g; + k; > 3,7 = 1,2. Set g = g1 + g2 and
k = k1 + ko and fix a decomposition S = Sy U Sy of {1,...,k} with |S;| = k;.
Then there is a canonical embedding

(55) Os: Hgl,k1+1 X ﬂg%kﬁl - M%k,

which assigns to marked curves (I;zi,... ,x};i +1)» © = 1,2, their union
¥, U Xy with 2, and #7_,; identified and the remaining points renumbered
by {1,...,k} according to S. Let

gkt Mg—1 k42 = Mg

be the map corresponding to gluing together the last two marked points. It is
continuous. Suppose that {8y}, is a homogeneous basis of H,(V;Z) modulo

torsion, (1) its intersection matrix and (n%°) = (n45) 1.

COMPOSITION LAW: Let

[K‘l] € H*(Mgi,k,-+l§Q)v 1= 1727 [KO] S H*(ﬂg-l,k—FZ;Q)
and A € Hy(V;Z). Then for any o, ...,oax in H,(V;Q) we have
‘I’X,gwk(gs*([Kl X Kal);ay,...,ox) = (‘UCOd(Kz)Ef;ICOd(ai)
> Y U ks (Kl {oiicks, Ba)n™ Wy gy k1 (K25 B, {05 k0),
A=A1+A2 a,b
UY o k(g i) ([Kol)s0ny o yon) =Y WY (Kol o, b, Bas Bo)n™.

a,b

Remark that (—1)C°d(K2)E?i1°°d(°‘i) = (—1)dim(K2)Zfi1 dim(ai) hecause the
dimensions of Mg, x,+1 and V are even. Denote the map forgetting the last
marked point by

Tk Mg,k - —Mg,k—l-
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REDUCTION FORMULA: Suppose that (g, k) # (0,3),(1,1). Then
(i) for any ay,...,ax—1 in HJ(V;Q) and [K] € H.(Mgx; Q) we have
(56)
‘I’A 95 (K, ok, [V]) = ‘I’X,g‘k—1((7fk)*([K])§0417 cees Ok—1);

(ii) if ag € Hap—o(V;Q) we have
(57)
\le’g,k([ﬂ,zl(K)];al, ey ) = PD(ak)(A)\IIX,g’k_l([K];al, ey Q1)

LEMMA 7.1: Let (V,w) be a closed symplectic manifold, {8, }%_, a homogeneous
basis of H,(V'; Z) modulo torsion as in the composition law above. Suppose that
there exist homology classes A € Ho(V;Z), a1,...,0m € H(V;Q) and g > 0
such that

(58) \le,g,m(pt; a1y, 0m) £ 0.
Then for each nonnegative integer g’ < g we have
VY g7 mt2s (P s+ @y By, B+ B By, ) 70
for s = g — ¢’ and some Bq,, B, in {Bo}f,i=1,...,s
Proof: By the composition law for Gromov-Witten invariants we have

\IJXgm(pt;al, ey Q) = \I!Z% ((tg,m)«(Dt); 1, ., )

- Z\IIA g—1,m+2 pt aq,. )am7ﬁa7/gb)nab

By (58), the left side is not equal to zero. So there exists a pair (a, b) such that

‘IIZ,Q—l,m+2(pt; QpyeeeyQmy, ﬁa) /Bb) # 0.

If g— 1> ¢’ we can repeat this argument to reduce g — 1. After s = g — ¢’ steps
the lemma follows. ]

LEMMA 7.2: Let (V,w) and {f}£_, be as in Lemma 7.1. Suppose that there
exist homology classes

A€ Hy(ViZ),&, ... 6x € Ho(V;Q) and [K| € H,(My; Q)

such that

(59) \pAgk([ ];gla"-agk)#o
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for some integer g > 0. Then for each integer m > k we have

m—k

VY (K6, €, PD(W)), .., PD([w])) # 0.

Here K1 = (mn) Lo+ 0 (mpy1) " HK).

Proof:  Using the definition of the GW-invariants, it follows from (59) that
29 + k > 3 and that the space M, x(V,J, A) of k-pointed stable J-maps of
genus g and of class A in V' is nonempty for generic J € J(V,w). In particular,
this implies w(A) # 0. Applying the reduction formula (57) to (59) we have

\IIX,g,ki—l([ﬂ-I;il(K)]; Eh s agka PD([LU])) = w(A) ' \Ijx,g,k({K]; Ela s 7£k) 7é 0.

Continuing this process m — k — 1 times again we get the desired conclusion.
|

PROPOSITION 7.3: For a closed symplectic manifold (V,w), if there exist ho-
mology classes A € Hy(V;Z) and o; € H,(V;Q), ¢ = 1,...,k, such that the
Gromov—-Witten invariant

(60) U 4 g.k+1(Pt P, 1,y o) # 0

for some integer g > 0, then there exist homology classes B € Hy(V;Z) and
b1, B2 € H(V;Q) such that

(61) U p,0,3(pt; pt, B1, B2) # 0.

Consequently, every strong symplectic uniruled manifold is strong 0-symplectic
uniruled.

(61) implies that B is spherical. In fact, in this case there exists a 3-pointed
stable J-curve of genus zero and in class B. By the gluing arguments we can
get a J-holomorphic sphere f: CP! — M which represents the class B. That
is, B is J-effective. So B is necessarily spherical; cf. page 67 in [McSa2].

Proof of Proposition 7.3: By Lemma 7.1, we can assume g = 0 in (60), i.e.,
(62) ‘IJA,O,IH-l(pt;pta Oyenny ak) ?1: 0.

This implies that ¥ +1 > 3 or k > 2. If k = 2 then the conclusion holds. If
k = 3 we can use the reduction formula (56) to get

‘I'A,O,S(PtQPt, Q... 08, [V]) = \I}A,OA(pt;pt» (&3 P a3) 7é 0.
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Therefore we can actually assume that k > 4 in (62). Since Ifi_o,m is connected
for every integer m > 3, Ho(Mom,Q) is generated by pt. For the canonical
embedding fg as in (55) we have g, (pt x pt) = pt. Hence it follows from the
composition law that

Ua0k+1(ptspt, o, ..., o)
= ) U 0a(pt;ptar, a2, Ba)n U, 061 (PE; B, 3, - -, k)
A=A1+A2 a,b

because cod(K3) = cod(pt) is even. This implies that

(63) \I;A1,0,4(pt;pt’alaa2ylga) # 0

for some A; € Hy(V;Z) and 1 < a < L. By the associativity of the quantum
multiplication,

W 4, 0,4(pt;pt, 00,00, 8,) =

) D W4y, 080kt 00, €0)Vay, 0,5(08; fiy a2, Ba)
Ay=Ap+Ap |
where {e;}; is a basis for the homology H,(M;Q) and {f;}; is the dual basis
with respect to the intersection pairing; see (6) in [Mc2]. It follows from this
identity and (63) that
U4, 03(ptpt01,€) #0

for some I. Taking B = Aj; we get (61). |

PROPOSITION 7.4: Let (M,w) and (N, o) be two closed symplectic manifolds.
Then for every integer k > 3 and homology classes Ay € Hy(N;Z) and §; €
H(N:Q),i=1,...,k

‘I’(j)\éﬁio,k(pt; [M] & ﬂl’ R [M] & ﬂk—l,Pt ® Bk) = ‘IJXQ,O,k(pt; /Bla . '75’6)7

where 0 € Hy(M;Z) denotes the zero class.

Proof: Take Jy € J(M,w), Jxv € J(N,o) and set J = Jpr x Jy. Note that
the product symplectic manifold (M x N,w & o) is a special symplectic fibre
bundle over (M,w) with fibres (N, o). Moreover, the almost complex structure
J =Ju xJy on M x N is fibred in the sense of Definition 2.2 in [Mc2].
So for a fibre class 0 @ A, we can, as in the proof of Proposition 4.4 of [Mc2],
construct a virtual moduli cycle Mg,g,(M x N, J,00A4,) of Mo 3(M x N, J,00Az)
such that the M-components of each element in Mg’g(M x N,J,0 ® Aj) are
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Jas-holomorphic, and thus constant. This shows that the virtual moduli cycle
Mg 5(M x N, J,0® Ay) may be chosen as M x Mg 5(N, Jy, Az). The desired
conclusion follows. These techniques were also used in the proof of Lemma 2.3
in [Lu6]. We refer to there and §4.3 in [Mc2] for more details. |

As a direct consequence of Proposition 7.3 and Proposition 7.4 we get

PROPOSITION 7.5: The product of a closed symplectic manifold and a strong
symplectic uniruled manifold is strong 0-symplectic uniruled. In particular, the
product of finitely many strong symplectic uniruled manifolds is also strong
0-symplectic uniruled.

Actually, we can generalize Proposition 7.4 to a symplectic fibre bundle over
a closed symplectic manifold with a closed symplectic manifold as fibre. There-
fore, a symplectic fibre bundle over a closed symplectic manifold with a strong
symplectic uniruled fibre is also strong symplectic uniruled.

In the proof of Theorem 1.21 we need a product formula for Gromov-Witten
invariants. Such a formula was given for algebraic geometry GW-invariants
of two projective algebraic manifolds in [B]. However, it is not clear whether
the GW-invariants used in this paper agree with those of [B] for projective
algebraic manifolds. For the sake of simplicity we shall give a product formula
for a special case, which is sufficient for the proof of Theorem 1.21. Recall that
a symplectic manifold (M,w) is said to be monotone if there exists a number
A > 0 such that w(A) = Aci(A) for A € ma(M). The minimal Chern number
N > 0 of a symplectic manifold (M,w) is defined by (c;,m3(M)) = NZ. For
J € J(M,w), a homology class A € H2(M,Z) is called J-effective if it can be
represented by a J-holomorphic sphere u: CP! — M. Such a homology class
must be spherical. Moreover, a class A € Hy(M,Z) is called indecomposable
if it cannot be decomposed as a sum A = A; + -+ + Ay of classes which are
spherical and satisfy w(4;) >0fori=1,...,k.

PROPOSITION 7.6: Let the closed symplectic manifold (M,w) either be mono-
tone or have minimal Chern number N > 2. Then for each indecomposable
class A € Hy(M,Z) and classes a; € H.(M,Z), i = 1,2,3 the Gromov-Witten
invariant \II%’O’S(pt;al,ag,ag) adopted in this paper agrees with the Invariant
Uil s(en, 2, a3) in §7.4 of [McSa2].

Proof: Let J € J(M,w). Consider the space Mo 3(M, A, J) of equivalence
classes of all 3-pointed stable J-maps of genus zero and of class A in M. For
[f] € Mg 3(M, A, J), since A is indecomposable it follows from the definition of
stable maps that f = (; 21, 29, z3; f) must be one of the following four cases:
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(2)
(b)

(c)

The domain ¥ = (CPl, zi, 1 =1,2,3 are three distinct marked points on
%, and f: ¥ — M is a J-holomorphic map of class A.

The domain ¥ has exactly two components ¥; = CP! and ¥ = CP!
which have a unique intersection point. fl|s, is nonconstant and £; only
contains one marked point. f|y, is constant and X5 contains two marked
points.

The domain ¥ has exactly two components 3, = CP! and ¥, = CP!
which have a unique intersection point. fl|s, is nonconstant and X, con-
tains no marked point. fl|x, is constant and ¥, contains three marked
points.

The domain ¥ has exactly three components £; = CP!, £, = CP! and
Y3 =CP) %; and & (resp. £ and ¥3) have only one intersection point,
and ¥ and X3 have no intersection point. f|x, is nonconstant and ¥
contains no marked point. f|y, is constant and g contains one marked
point. fly, is constant and 3 contains two marked points.

Let Mo a(M, A, J);, i = 1,2,3,4 be the subsets of the four kinds of stable
maps. It is easily proved that for generic J € J(M,w) they are smooth mani-

folds of dimensions

dim My 3(M, A, J); = dim M + 2c;(A),

dim Mo 3(M, A, J); = dim M + 2¢;(A) — 4,
dim Mo 3(M, A, J)3 = dim M + 2¢;(A) — 6,
dim My 3(M, A, J)4 = dim M + 2¢,(A) — 6.

So Mo 3(M,A,J) = U?=1 Mo 3(M, A, J); is a stratified smooth compact mani-
fold. Note that each stable map in Mo 3(M, A, J) has no free components. The
construction of the virtual moduli cycle in [Lu8] with Liu-Tian’s method in
[LiuT] is thus trivial or not needed: The virtual moduli cycle of Mg (M, 4, J)
may be taken as

M0’3(M,A, J) - B(I)\:Ia,Av [f] = [f]’

where Bgf& 4 is the space of equivalence classes of all 3-pointed stable L*P-

maps of genus zero and of class A in M. Therefore for homology classes a; €

H3(M,Z),i=1,2,3, satisfying the dimension condition

deg(ay) + deg(az) + deg(as) = 2n + 2¢1(A)

the Gromov—Witten invariant

(64)

‘I’%O,s(l’t; ay, 02, 03) = (Engg“) - (@1 x ag x @3)

J,A — — —
= BV )Ry 4 (01,4,0), * (G2 X T2 X T3)
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because the intersections can only occur in the top strata. Here
(65)  EVgs: Moa(M,AJ)— M°, [f] = (f(21), f(z2), f(23),

and @; : U; — M are generic pseudocycle representatives of the classes «;,
i = 1,2,3; cf. [McSa2] for details. Note that each element [f] in Mo 3(M, 4, J);
has a unique representative of the form (CP';0,1,00; f). So Mo s(M, A, J)
may be identified with the space M(M, A, J) of all J-holomorphic curves which
represent the class A. Fix marked points z = (0,1,00) € (CP*)® and define the
evaluation map

(66) EA,J,z: M(M’Av J) - M37 f = (f(O),f(l),f(OO))

From the above arguments one easily checks that it is a pseudocycle in the sense
of [McSa2]. Then (64) gives rise to

(67) \11%0,3(pt; ai,ag,03) =E4 55+ (@ x g X a3) = \11%3(01,02,(13)

because we can require that @; X @y X &3 is also transverse to E4 s . |

PROPOSITION 7.7: Consider closed symplectic manifolds (My,wy) as in Propo-
sition 7.6 and indecomposable classes Ay € Hy(My,Z), k=1,...,m. Then for
agk) € H,(My,Z),i =1,2,3 and k = 1,...,m we have the Gromov-Witten
invariant

(68)

k k) (k
‘I’%o,s(l)t; ka=10§ )a Xhe 1a§ ), X e 10‘3 H ‘I’Ak 0,3 (pt; o ),ag ),aé ))»

where A = @, Ax.

Proof: Set (M,w) = (X7 My, Xt wi). Take Jp € J(My,wi), k=1,...,m
and set J = x7,Jx. Then J € J(M,w). It is not hard to prove that for
generic Jy € J(Mg,wy) the space Mo 3(M, A, J) is still a stratified smooth
compact manifold. We still denote by ./T/i()yg;(M , A, J)y its top stratum, which
consists of elements [f] € Mg 3(M, A, J) whose domain has only one component
CP'. It is a smooth noncompact manifold of dimension dim M + 2¢;(4) =
S, dim My, + 2¢;(Ag), and each element [f] € Mg 3(M, A, J); has a unique
representative of the form

f=(CP%0,1,00; f = (f1,- -, fm)),
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where fj, : CP' — Mj, are J-holomorphic maps in the homology classes A, k =
1,...,m. Note that the other strata of Mg 3(M, A, J) have at least codimension
two. For homology classes aﬁk) € H.(My,Z), i = 1,2,3and k = 1,...,m
satisfying the dimension condition

deg(agk)) + deg(agk)) + deg(agk)) = dim My, + 2¢1(Ax),

we may choose the pseudo-cycle representatives a,(.’“): UZ-(k) —M,1=1,2,3 and
k=1,...,m such that:
(i) (xk 1cvlk)) X (X7w 1a(k)) X (Xpn 1oz(k)) is transverse to the evaluations
EV0 3 in (65) and E4 j, in (66),

3 x 3l « 5o

(i1) each @; is transverse to the evaluations Fg4, . » and

Evgk Ak M0,3(Mk7Aka Jk) — M,%, [fk] L (fk(o)afk:(l)afk(oo))

fork=1,...,m
Then as above we get that the Gromov-Witten invariant

k k
‘I’%,o,s(Pt; ><Zl=1a§ )a X e 10‘§ )7 X o 10‘g ))

m _{k
= (BVed) - (xPaM) x (xPeyas?) x (xpu,ag))
_(k — _(k
= (VI Rty srany, - (XEy@) x (xpyal) x (xj,al))

k |
= Eaa- (xp,a?) x (xpal?) x (xpqad?))

(69)

because of (67). Note that M(M,A,J) = [[i; M(Mk, Ak, Ji). It easily
follows from the above (i) and (ii) that

—(k m —=(k m —(k
Ea s (Xpe@®)x (xk- ay)) x (X7 ay)))

= T Eausen @ x ) x o)
k=1

3

k k
= [ ¥ia(e”, 027, o)
1

K (k) (k
Lo 03(pt ag )7aé )7 ( ))‘

|
:‘33

ko
I
i

The final step comes from Proposition 7.6. This and (69) lead to (68). |
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